These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10669783)

  • 1. Tryptophanyl contributions to apomyoglobin fluorescence resolved by site-directed mutagenesis.
    Sirangelo I; Tavassi S; Irace G
    Biochim Biophys Acta; 2000 Feb; 1476(2):173-80. PubMed ID: 10669783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resolution of tryptophan-ANS fluorescence energy transfer in apomyoglobin by site-directed mutagenesis.
    Sirangelo I; Malmo C; Casillo M; Irace G
    Photochem Photobiol; 2002 Oct; 76(4):381-4. PubMed ID: 12405143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single tryptophanyl substitutions affect the structure of apomyoglobin.
    Sirangelo I; Tavassi S; Irace G
    Boll Soc Ital Biol Sper; 1998; 74(9-10):83-9. PubMed ID: 10904557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophanyl substitutions in apomyoglobin affect conformation and dynamic properties of AGH subdomain.
    Sirangelo I; Iannuzzi C; Malmo C; Irace G
    Biopolymers; 2003 Dec; 70(4):649-54. PubMed ID: 14648775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence study of the conformational properties of myoglobin structure. 3. pH-dependent changes in porphyrin and tryptophan fluorescence of the complex of sperm whale apomyoglobin with protoporphyrin IX; the role of the porphyrin macrocycle and iron in formation of native myoglobin structure.
    Postnikova GB; Yumakova EM
    Eur J Biochem; 1991 May; 198(1):241-6. PubMed ID: 2040285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-ultraviolet circular dichroic activity of apomyoglobin: resolution of the individual tryptophanyl contributions by site-directed mutagenesis.
    Sirangelo I; Bismuto E; Tavassi S; Irace G
    Eur Biophys J; 1998; 27(1):27-31. PubMed ID: 9463888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resolved fluorescence of the two tryptophan residues in horse apomyoglobin.
    Glandières JM; Twist C; Haouz A; Zentz C; Alpert B
    Photochem Photobiol; 2000 Apr; 71(4):382-6. PubMed ID: 10824587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of acid denaturation. The role of histidine residues in the partial unfolding of apomyoglobin.
    Barrick D; Hughson FM; Baldwin RL
    J Mol Biol; 1994 Apr; 237(5):588-601. PubMed ID: 8158639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tryptophanyl fluorescence heterogeneity of apomyoglobins. Correlation with the presence of two distinct structural domains.
    Irace G; Balestrieri C; Parlato G; Servillo L; Colonna G
    Biochemistry; 1981 Feb; 20(4):792-9. PubMed ID: 7213613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molten globular characteristics of the native state of apomyoglobin.
    Lin L; Pinker RJ; Forde K; Rose GD; Kallenbach NR
    Nat Struct Biol; 1994 Jul; 1(7):447-52. PubMed ID: 7664063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure-induced perturbation of apomyoglobin structure: fluorescence studies on native and acidic compact forms.
    Bismuto E; Sirangelo I; Irace G; Gratton E
    Biochemistry; 1996 Jan; 35(4):1173-8. PubMed ID: 8573571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multisite fluorescence in proteins with multiple tryptophan residues. Apomyoglobin natural variants and site-directed mutants.
    Tcherkasskaya O; Bychkova VE; Uversky VN; Gronenborn AM
    J Biol Chem; 2000 Nov; 275(46):36285-94. PubMed ID: 10948189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.
    Yang AS; Honig B
    J Mol Biol; 1994 Apr; 237(5):602-14. PubMed ID: 8158640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Folding of Aplysia limacina apomyoglobin involves an intermediate in common with other evolutionarily distant globins.
    Musto R; Bigotti MG; Travaglini-Allocatelli C; Brunori M; Cutruzzolà F
    Biochemistry; 2004 Jan; 43(1):230-6. PubMed ID: 14705950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence study of the conformational properties of myoglobin structure. 1. pH-dependent changes of tryptophanyl fluorescence in intact and chemically modified sperm whale apomyoglobins.
    Postnikova GB; Komarov YE; Yumakova EM
    Eur J Biochem; 1991 May; 198(1):223-32. PubMed ID: 2040283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of native and non-native structure in kinetic folding intermediates of apomyoglobin.
    Nishimura C; Dyson HJ; Wright PE
    J Mol Biol; 2006 Jan; 355(1):139-56. PubMed ID: 16300787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex Folding Landscape of Apomyoglobin at Acidic pH Revealed by Ultrafast Kinetic Analysis of Core Mutants.
    Mizukami T; Xu M; Fazlieva R; Bychkova VE; Roder H
    J Phys Chem B; 2018 Dec; 122(49):11228-11239. PubMed ID: 30133301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH-induced equilibrium unfolding of apomyoglobin: substitutions at conserved Trp14 and Met131 and non-conserved Val17 positions.
    Dyuysekina AE; Dolgikh DA; Samatova Baryshnikova EN; Tiktopulo EI; Balobanov VA; Bychkova VE
    Biochemistry (Mosc); 2008 Jun; 73(6):693-701. PubMed ID: 18620536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protonation behavior of histidine 24 and histidine 119 in forming the pH 4 folding intermediate of apomyoglobin.
    Geierstanger B; Jamin M; Volkman BF; Baldwin RL
    Biochemistry; 1998 Mar; 37(12):4254-65. PubMed ID: 9521748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent and thermal denaturation of the acidic compact state of apomyoglobin.
    Sirangelo I; Bismuto E; Irace G
    FEBS Lett; 1994 Jan; 338(1):11-5. PubMed ID: 8307149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.