These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
280 related articles for article (PubMed ID: 10669893)
1. A Kermack-McKendrick model applied to an infectious disease in a natural population. Roberts MG IMA J Math Appl Med Biol; 1999 Dec; 16(4):319-32. PubMed ID: 10669893 [TBL] [Abstract][Full Text] [Related]
2. Global properties of infectious disease models with nonlinear incidence. Korobeinikov A Bull Math Biol; 2007 Aug; 69(6):1871-86. PubMed ID: 17443392 [TBL] [Abstract][Full Text] [Related]
3. An SEI model with density-dependent demographics and epidemiology. Roberts MG; Jowett J IMA J Math Appl Med Biol; 1996 Dec; 13(4):245-57. PubMed ID: 8968785 [TBL] [Abstract][Full Text] [Related]
4. Estimating the transmission rate for a highly infectious disease. Becker NG; Hasofer AM Biometrics; 1998 Jun; 54(2):730-8. PubMed ID: 9629653 [TBL] [Abstract][Full Text] [Related]
5. Density-dependent dynamics and superinfection in an epidemic model. Mena-Lorca J; Velasco-Hernandez JX; Castillo-Chavez C IMA J Math Appl Med Biol; 1999 Dec; 16(4):307-17. PubMed ID: 10669892 [TBL] [Abstract][Full Text] [Related]
6. The Kermack-McKendrick epidemic model revisited. Brauer F Math Biosci; 2005 Dec; 198(2):119-31. PubMed ID: 16135371 [TBL] [Abstract][Full Text] [Related]
7. Stability analysis of a general age-dependent vaccination model for a vertically transmitted disease under the proportionate mixing assumption. el-Doma M IMA J Math Appl Med Biol; 2000 Jun; 17(2):119-36. PubMed ID: 10994509 [TBL] [Abstract][Full Text] [Related]
8. Deterministic epidemic models with explicit household structure. House T; Keeling MJ Math Biosci; 2008 May; 213(1):29-39. PubMed ID: 18374370 [TBL] [Abstract][Full Text] [Related]
10. A multi-species epidemic model with spatial dynamics. Arino J; Davis JR; Hartley D; Jordan R; Miller JM; van den Driessche P Math Med Biol; 2005 Jun; 22(2):129-42. PubMed ID: 15778332 [TBL] [Abstract][Full Text] [Related]
11. A transmission model for a disease with some fatalities. Becker NG; Shao Q Math Biosci; 1994 Nov; 124(1):107-22. PubMed ID: 7827423 [TBL] [Abstract][Full Text] [Related]
12. Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission. Korobeinikov A Bull Math Biol; 2006 Apr; 68(3):615-26. PubMed ID: 16794947 [TBL] [Abstract][Full Text] [Related]
13. Non-linear incidence and stability of infectious disease models. Korobeinikov A; Maini PK Math Med Biol; 2005 Jun; 22(2):113-28. PubMed ID: 15778334 [TBL] [Abstract][Full Text] [Related]
14. A generalized stochastic model for the analysis of infectious disease final size data. Addy CL; Longini IM; Haber M Biometrics; 1991 Sep; 47(3):961-74. PubMed ID: 1742449 [TBL] [Abstract][Full Text] [Related]
15. Lyapunov functions and global properties for SEIR and SEIS epidemic models. Korobeinikov A Math Med Biol; 2004 Jun; 21(2):75-83. PubMed ID: 15228100 [TBL] [Abstract][Full Text] [Related]
16. A fully coupled, mechanistic model for infectious disease dynamics in a metapopulation: movement and epidemic duration. Jesse M; Ezanno P; Davis S; Heesterbeek JA J Theor Biol; 2008 Sep; 254(2):331-8. PubMed ID: 18577388 [TBL] [Abstract][Full Text] [Related]
17. Role of horizontal incidence in the occurrence and control of chaos in an eco-epidemiological system. Chatterjee S; Kundu K; Chattopadhyay J Math Med Biol; 2007 Sep; 24(3):301-26. PubMed ID: 17804465 [TBL] [Abstract][Full Text] [Related]
18. An SEIS epidemic model with transport-related infection. Wan H; Cui JA J Theor Biol; 2007 Aug; 247(3):507-24. PubMed ID: 17481666 [TBL] [Abstract][Full Text] [Related]
19. Epidemics with general generation interval distributions. Miller JC; Davoudi B; Meza R; Slim AC; Pourbohloul B J Theor Biol; 2010 Jan; 262(1):107-15. PubMed ID: 19679141 [TBL] [Abstract][Full Text] [Related]