These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 10670901)

  • 1. NMR microscopy of polyurethane foams.
    Szayna M; Voelkel R
    Solid State Nucl Magn Reson; 1999 Nov; 15(2):99-102. PubMed ID: 10670901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyurethane foams electrophoretically coated with carbon nanotubes for tissue engineering scaffolds.
    Zawadzak E; Bil M; Ryszkowska J; Nazhat SN; Cho J; Bretcanu O; Roether JA; Boccaccini AR
    Biomed Mater; 2009 Feb; 4(1):015008. PubMed ID: 19020345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of fluorocarbon blowing agents in insulating polymer foams by 19F NMR imaging.
    Fyfe CA; Mei Z; Grondey H
    Magn Reson Imaging; 1996; 14(7-8):887-9. PubMed ID: 8970101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalyst-dependent drug loading of LDI-glycerol polyurethane foams leads to differing controlled release profiles.
    Sivak WN; Pollack IF; Petoud S; Zamboni WC; Zhang J; Beckman EJ
    Acta Biomater; 2008 Sep; 4(5):1263-74. PubMed ID: 18440884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of new biologically active polyurethane foams.
    Savelyev Y; Veselov V; Markovskaya L; Savelyeva O; Akhranovich E; Galatenko N; Robota L; Travinskaya T
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():127-35. PubMed ID: 25491811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micro-imaging by magnetic resonance on flexible polyurethane foams.
    Chauvaux B; Dereppe JM; Huis R
    Magn Reson Imaging; 1996; 14(7-8):937-9. PubMed ID: 8970115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the degradation of polyurethane foams after artificial and natural ageing by using pyrolysis-gas chromatography/mass spectrometry and headspace-solid phase microextraction-gas chromatography/mass spectrometry.
    Lattuati-Derieux A; Thao-Heu S; Lavédrine B
    J Chromatogr A; 2011 Jul; 1218(28):4498-508. PubMed ID: 21645901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis.
    Shin YC; Kang SH; Lee JH; Kim B; Hong SW; Han DW
    J Biomater Sci Polym Ed; 2018; 29(7-9):762-774. PubMed ID: 28657493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparisons of Anterior Plate Screw Pullout Strength Between Polyurethane Foams and Thoracolumbar Cadaveric Vertebrae.
    Nagaraja S; Palepu V
    J Biomech Eng; 2016 Oct; 138(10):. PubMed ID: 27536905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructure-Property Relationship of Polyurethane Foams Modified with Baltic Sea Biomass: Microcomputed Tomography vs. Scanning Electron Microscopy.
    Kosmela P; Suchorzewski J; Formela K; Kazimierski P; Haponiuk JT; Piszczyk Ł
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33339184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape memory polymer foams for cerebral aneurysm reparation: effects of plasma sterilization on physical properties and cytocompatibility.
    De Nardo L; Alberti R; Cigada A; Yahia L; Tanzi MC; Farè S
    Acta Biomater; 2009 Jun; 5(5):1508-18. PubMed ID: 19136318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro degradation of a biodegradable polyurethane foam, based on 1,4-butanediisocyanate: a three-year study at physiological and elevated temperature.
    Zuidema J; van Minnen B; Span MM; Hissink CE; van Kooten TG; Bos RR
    J Biomed Mater Res A; 2009 Sep; 90(3):920-30. PubMed ID: 18646201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradative-release as a function of drug structure from LDI-glycerol polyurethanes.
    Sivak WN; Zhang J; Petoud S; Beckman EJ
    Biomed Mater Eng; 2010; 20(5):269-81. PubMed ID: 21084739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxypropylation of cork and the use of the ensuing polyols in polyurethane formulations.
    Evtiouguina M; Barros-Timmons A; Cruz-Pinto JJ; Neto CP; Belgacem MN; Gandini A
    Biomacromolecules; 2002; 3(1):57-62. PubMed ID: 11866556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Open cell polyurethane foam compression failure characterization and its relationship to morphometry.
    Belda R; Palomar M; Marco M; Vercher-Martínez A; Giner E
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 120():111754. PubMed ID: 33545895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compressive and shear properties of commercially available polyurethane foams.
    Thompson MS; McCarthy ID; Lidgren L; Ryd L
    J Biomech Eng; 2003 Oct; 125(5):732-4. PubMed ID: 14618933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous drug release at different rates from biodegradable polyurethane foams.
    Sivak WN; Zhang J; Petoud S; Beckman EJ
    Acta Biomater; 2009 Sep; 5(7):2398-408. PubMed ID: 19398389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and ecotoxicity assessment of new biodegradable polyurethane foams.
    Vojtová L; Vávrová M; Bebnarík K; Sucman E; David J; Jancár J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Apr; 42(5):677-83. PubMed ID: 17454375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron capture detection-gas chromatographic determination of diaminotoluenes in polyurethane foam as heptafluorobutyryl derivatives.
    Hirayama T; Ono M; Uchiyama K; Nohara M; Fukui S
    J Assoc Off Anal Chem; 1985; 68(4):746-8. PubMed ID: 3897185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstructural Parameters for Modelling of Superconducting Foams.
    Koblischka MR; Koblischka-Veneva A; Nouailhetas Q; Hajiri G; Berger K; Douine B; Gokhfeld D
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.