These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 10672040)

  • 21. Heterotopic expression of class B floral homeotic genes supports a modified ABC model for tulip (Tulipa gesneriana).
    Kanno A; Saeki H; Kameya T; Saedler H; Theissen G
    Plant Mol Biol; 2003 Jul; 52(4):831-41. PubMed ID: 13677470
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Divergence of the Floral A-Function between an Asterid and a Rosid Species.
    Morel P; Heijmans K; Rozier F; Zethof J; Chamot S; Bento SR; Vialette-Guiraud A; Chambrier P; Trehin C; Vandenbussche M
    Plant Cell; 2017 Jul; 29(7):1605-1621. PubMed ID: 28646074
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product.
    Drews GN; Bowman JL; Meyerowitz EM
    Cell; 1991 Jun; 65(6):991-1002. PubMed ID: 1675158
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic interactions among floral homeotic genes of Arabidopsis.
    Bowman JL; Smyth DR; Meyerowitz EM
    Development; 1991 May; 112(1):1-20. PubMed ID: 1685111
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
    Davies B; Motte P; Keck E; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1999 Jul; 18(14):4023-34. PubMed ID: 10406807
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS.
    Krizek BA; Prost V; Macias A
    Plant Cell; 2000 Aug; 12(8):1357-66. PubMed ID: 10948255
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of SUP expression identifies multiple regulators involved in arabidopsis floral meristem development.
    Sakai H; Krizek BA; Jacobsen SE; Meyerowitz EM
    Plant Cell; 2000 Sep; 12(9):1607-18. PubMed ID: 11006335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The ASK1 gene regulates development and interacts with the UFO gene to control floral organ identity in Arabidopsis.
    Zhao D; Yang M; Solava J; Ma H
    Dev Genet; 1999 Sep; 25(3):209-23. PubMed ID: 10528262
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of the Petunia TM6 MADS box gene reveals functional divergence within the DEF/AP3 lineage.
    Rijpkema AS; Royaert S; Zethof J; van der Weerden G; Gerats T; Vandenbussche M
    Plant Cell; 2006 Aug; 18(8):1819-32. PubMed ID: 16844905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant.
    Zachgo S; Silva Ede A; Motte P; Tröbner W; Saedler H; Schwarz-Sommer Z
    Development; 1995 Sep; 121(9):2861-75. PubMed ID: 7555713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RABBIT EARS, encoding a SUPERMAN-like zinc finger protein, regulates petal development in Arabidopsis thaliana.
    Takeda S; Matsumoto N; Okada K
    Development; 2004 Jan; 131(2):425-34. PubMed ID: 14681191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs.
    Honma T; Goto K
    Nature; 2001 Jan; 409(6819):525-9. PubMed ID: 11206550
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of three GLOBOSA-like MADS-box genes from maize: evidence for ancient paralogy in one class of floral homeotic B-function genes of grasses.
    Münster T; Wingen LU; Faigl W; Werth S; Saedler H; Theissen G
    Gene; 2001 Jan; 262(1-2):1-13. PubMed ID: 11179662
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The S locus-linked Primula homeotic mutant sepaloid shows characteristics of a B-function mutant but does not result from mutation in a B-function gene.
    Li J; Webster M; Dudas B; Cook H; Manfield I; Davies B; Gilmartin PM
    Plant J; 2008 Oct; 56(1):1-12. PubMed ID: 18564384
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis.
    Tzeng TY; Chen HY; Yang CH
    Plant Physiol; 2002 Dec; 130(4):1827-36. PubMed ID: 12481066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ectopic expression of an Eriobotrya japonica APETALA3 ortholog rescues the petal and stamen identities in Arabidopsis ap3-3 mutant.
    Jing D; Chen W; Shi M; Wang D; Xia Y; He Q; Dang J; Guo Q; Liang G
    Biochem Biophys Res Commun; 2020 Feb; 523(1):33-38. PubMed ID: 31831173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional analysis of B and C class floral organ genes in spinach demonstrates their role in sexual dimorphism.
    Sather DN; Jovanovic M; Golenberg EM
    BMC Plant Biol; 2010 Mar; 10():46. PubMed ID: 20226063
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic separation of third and fourth whorl functions of AGAMOUS.
    Sieburth LE; Running MP; Meyerowitz EM
    Plant Cell; 1995 Aug; 7(8):1249-58. PubMed ID: 7549481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sex determination in the monoecious species cucumber is confined to specific floral whorls.
    Kater MM; Franken J; Carney KJ; Colombo L; Angenent GC
    Plant Cell; 2001 Mar; 13(3):481-93. PubMed ID: 11251091
    [TBL] [Abstract][Full Text] [Related]  

  • 40. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice.
    Yun D; Liang W; Dreni L; Yin C; Zhou Z; Kater MM; Zhang D
    Mol Plant; 2013 May; 6(3):743-56. PubMed ID: 23300256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.