BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 10672175)

  • 1. Acid- and multistress-resistant mutants of Lactococcus lactis : identification of intracellular stress signals.
    Rallu F; Gruss A; Ehrlich SD; Maguin E
    Mol Microbiol; 2000 Feb; 35(3):517-28. PubMed ID: 10672175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of metabolic flux on stress response pathways in Lactococcus lactis.
    Duwat P; Ehrlich SD; Gruss A
    Mol Microbiol; 1999 Feb; 31(3):845-58. PubMed ID: 10048028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lactococcus lactis and stress.
    Rallu F; Gruss A; Maguin E
    Antonie Van Leeuwenhoek; 1996 Oct; 70(2-4):243-51. PubMed ID: 8879409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity.
    Ryssel M; Hviid AM; Dawish MS; Haaber J; Hammer K; Martinussen J; Kilstrup M
    Microbiology (Reading); 2014 Nov; 160(Pt 11):2551-2559. PubMed ID: 25143058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced acid-stress tolerance in Lactococcus lactis NZ9000 by overexpression of ABC transporters.
    Zhu Z; Yang J; Yang P; Wu Z; Zhang J; Du G
    Microb Cell Fact; 2019 Aug; 18(1):136. PubMed ID: 31409416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Lactococcus lactis UV-sensitive mutants obtained by ISS1 transposition.
    Duwat P; Cochu A; Ehrlich SD; Gruss A
    J Bacteriol; 1997 Jul; 179(14):4473-9. PubMed ID: 9226255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability of active prophages in industrial Lactococcus lactis strains in the presence of heat, acid, osmotic, oxidative and antibiotic stressors.
    Ho CH; Stanton-Cook M; Beatson SA; Bansal N; Turner MS
    Int J Food Microbiol; 2016 Mar; 220():26-32. PubMed ID: 26773254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteome phenotyping of acid stress-resistant mutants of Lactococcus lactis MG1363.
    Budin-Verneuil A; Pichereau V; Auffray Y; Ehrlich D; Maguin E
    Proteomics; 2007 Jun; 7(12):2038-46. PubMed ID: 17514678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT.
    Zhu Z; Ji X; Wu Z; Zhang J; Du G
    J Ind Microbiol Biotechnol; 2018 Dec; 45(12):1091-1101. PubMed ID: 30232653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resistance to bacteriocin Lcn972 improves oxygen tolerance of Lactococcus lactis IPLA947 without compromising its performance as a dairy starter.
    López-González MJ; Campelo AB; Picon A; Rodríguez A; Martínez B
    BMC Microbiol; 2018 Jul; 18(1):76. PubMed ID: 30029618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LmrCD is a major multidrug resistance transporter in Lactococcus lactis.
    Lubelski J; de Jong A; van Merkerk R; Agustiandari H; Kuipers OP; Kok J; Driessen AJ
    Mol Microbiol; 2006 Aug; 61(3):771-81. PubMed ID: 16879641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of the Lactococcus lactis high-affinity phosphate transporter confers oxygen and thiol resistance and alters metal homeostasis.
    Cesselin B; Ali D; Gratadoux JJ; Gaudu P; Duwat P; Gruss A; El Karoui M
    Microbiology (Reading); 2009 Jul; 155(Pt 7):2274-2281. PubMed ID: 19389779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactococcus lactis, a bacterial model for stress responses and survival.
    Duwat P; Cesselin B; Sourice S; Gruss A
    Int J Food Microbiol; 2000 Apr; 55(1-3):83-6. PubMed ID: 10791722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat resistance and salt hypersensitivity in Lactococcus lactis due to spontaneous mutation of llmg_1816 (gdpP) induced by high-temperature growth.
    Smith WM; Pham TH; Lei L; Dou J; Soomro AH; Beatson SA; Dykes GA; Turner MS
    Appl Environ Microbiol; 2012 Nov; 78(21):7753-9. PubMed ID: 22923415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic understanding of Lactococcus lactis response to acid stress using transcriptomics approaches.
    Zhu Z; Yang P; Wu Z; Zhang J; Du G
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1621-1629. PubMed ID: 31414323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pleiotropic transcriptional repressor CodY senses the intracellular pool of branched-chain amino acids in Lactococcus lactis.
    Guédon E; Serror P; Ehrlich SD; Renault P; Delorme C
    Mol Microbiol; 2001 Jun; 40(5):1227-39. PubMed ID: 11401725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance.
    Weidmann S; Maitre M; Laurent J; Coucheney F; Rieu A; Guzzo J
    Int J Food Microbiol; 2017 Apr; 247():18-23. PubMed ID: 27318622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glyceraldehyde-3-phosphate dehydrogenase regulation in Lactococcus lactis ssp. cremoris MG1363 or relA mutant at low pH.
    Mercade M; Cocaign-Bousquet M; Loubière P
    J Appl Microbiol; 2006 Jun; 100(6):1364-72. PubMed ID: 16696685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative transcriptome analysis reveals the contribution of membrane transporters to acid tolerance in Lactococcus lactis.
    Zhu Z; Yang P; Yang J; Zhang J
    J Biotechnol; 2022 Sep; 357():9-17. PubMed ID: 35963594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of novel carotenoid biosynthesis genes from Enterococcus gilvus improves the multistress tolerance of Lactococcus lactis.
    Hagi T; Kobayashi M; Kawamoto S; Shima J; Nomura M
    J Appl Microbiol; 2013 Jun; 114(6):1763-71. PubMed ID: 23473548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.