BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10672186)

  • 1. BasT, a membrane-bound transducer protein for amino acid detection in Halobacterium salinarum.
    Kokoeva MV; Oesterhelt D
    Mol Microbiol; 2000 Feb; 35(3):647-56. PubMed ID: 10672186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Car: a cytoplasmic sensor responsible for arginine chemotaxis in the archaeon Halobacterium salinarum.
    Storch KF; Rudolph J; Oesterhelt D
    EMBO J; 1999 Mar; 18(5):1146-58. PubMed ID: 10064582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of methylation sites and effects of phototaxis stimuli on transducer methylation in Halobacterium salinarum.
    Perazzona B; Spudich JL
    J Bacteriol; 1999 Sep; 181(18):5676-83. PubMed ID: 10482508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis.
    Streif S; Oesterhelt D; Marwan W
    BMC Syst Biol; 2010 Mar; 4():27. PubMed ID: 20298562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel mode of sensory transduction in archaea: binding protein-mediated chemotaxis towards osmoprotectants and amino acids.
    Kokoeva MV; Storch KF; Klein C; Oesterhelt D
    EMBO J; 2002 May; 21(10):2312-22. PubMed ID: 12006484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological sites of deamidation and methyl esterification in sensory transducers of Halobacterium salinarum.
    Koch MK; Staudinger WF; Siedler F; Oesterhelt D
    J Mol Biol; 2008 Jul; 380(2):285-302. PubMed ID: 18514223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus.
    Schlesner M; Miller A; Streif S; Staudinger WF; Müller J; Scheffer B; Siedler F; Oesterhelt D
    BMC Microbiol; 2009 Mar; 9():56. PubMed ID: 19291314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color-specific conditioning effects due to both orange and blue stimuli are observed in a Halobacterium salinarum strain devoid of putative methylatable sites on HtrI.
    Lucia S; Cercignani G; Frediani A; Petracchi D
    Photochem Photobiol; 2003 Jan; 77(1):110-3. PubMed ID: 12856891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Primary structure of an archaebacterial transducer, a methyl-accepting protein associated with sensory rhodopsin I.
    Yao VJ; Spudich JL
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11915-9. PubMed ID: 1465418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein.
    Zhang W; Brooun A; Mueller MM; Alam M
    Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis.
    Thoelke MS; Casper JM; Ordal GW
    J Biol Chem; 1990 Feb; 265(4):1928-32. PubMed ID: 2105313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MpcT is the transducer for membrane potential changes in Halobacterium salinarum.
    Koch MK; Oesterhelt D
    Mol Microbiol; 2005 Mar; 55(6):1681-94. PubMed ID: 15752193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular cloning and characterization of a chemotactic transducer gene in Pseudomonas aeruginosa.
    Kuroda A; Kumano T; Taguchi K; Nikata T; Kato J; Ohtake H
    J Bacteriol; 1995 Dec; 177(24):7019-25. PubMed ID: 8522505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Primary structure and functional analysis of the soluble transducer protein HtrXI in the archaeon Halobacterium salinarium.
    Brooun A; Zhang W; Alam M
    J Bacteriol; 1997 May; 179(9):2963-8. PubMed ID: 9139915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensory rhodopsins I and II modulate a methylation/demethylation system in Halobacterium halobium phototaxis.
    Spudich EN; Takahashi T; Spudich JL
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7746-50. PubMed ID: 2682623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel methyl transfer during chemotaxis in Bacillus subtilis.
    Thoelke MS; Kirby JR; Ordal GW
    Biochemistry; 1989 Jun; 28(13):5585-9. PubMed ID: 2505839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of a chemotaxis operon in Rhizobium meliloti.
    Greck M; Platzer J; Sourjik V; Schmitt R
    Mol Microbiol; 1995 Mar; 15(6):989-1000. PubMed ID: 7623670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An archaeal aerotaxis transducer combines subunit I core structures of eukaryotic cytochrome c oxidase and eubacterial methyl-accepting chemotaxis proteins.
    Brooun A; Bell J; Freitas T; Larsen RW; Alam M
    J Bacteriol; 1998 Apr; 180(7):1642-6. PubMed ID: 9537358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ordered membrane insertion of an archaeal opsin in vivo.
    Dale H; Angevine CM; Krebs MP
    Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7847-52. PubMed ID: 10869439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemotaxis in Bacillus subtilis requires either of two functionally redundant CheW homologs.
    Rosario MM; Fredrick KL; Ordal GW; Helmann JD
    J Bacteriol; 1994 May; 176(9):2736-9. PubMed ID: 8169224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.