These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 10672588)
61. MR imaging for measurements of ventricles and cerebral cortex in postnatal rats (H-Tx strain) with progressive inherited hydrocephalus. Harris NG; Jones HC; Williams SC Exp Neurol; 1992 Oct; 118(1):1-6. PubMed ID: 1397170 [TBL] [Abstract][Full Text] [Related]
62. Reduced local cerebral blood flow in periventricular white matter in experimental neonatal hydrocephalus-restoration with CSF shunting. da Silva MC; Michowicz S; Drake JM; Chumas PD; Tuor UI J Cereb Blood Flow Metab; 1995 Nov; 15(6):1057-65. PubMed ID: 7593338 [TBL] [Abstract][Full Text] [Related]
63. Acute and chronic cerebral white matter damage in neonatal hydrocephalus. Del Bigio MR; da Silva MC; Drake JM; Tuor UI Can J Neurol Sci; 1994 Nov; 21(4):299-305. PubMed ID: 7874613 [TBL] [Abstract][Full Text] [Related]
64. Subependymal cells provide a faster response to ependymal injury than astrocytes in the hydrocephalic brain. Collins P; Goulding DA Neuropathol Appl Neurobiol; 1992 Aug; 18(4):387-94. PubMed ID: 1528390 [TBL] [Abstract][Full Text] [Related]
65. On the pathology of experimental hydrocephalus. Nyberg-Hansen R; Torvik A; Bhatia R Brain Res; 1975 Sep; 95(2-3):343-50. PubMed ID: 1156879 [TBL] [Abstract][Full Text] [Related]
66. A novel model of acquired hydrocephalus for evaluation of neurosurgical treatments. McAllister JP; Talcott MR; Isaacs AM; Zwick SH; Garcia-Bonilla M; Castaneyra-Ruiz L; Hartman AL; Dilger RN; Fleming SA; Golden RK; Morales DM; Harris CA; Limbrick DD Fluids Barriers CNS; 2021 Nov; 18(1):49. PubMed ID: 34749745 [TBL] [Abstract][Full Text] [Related]
67. "Hydrocephalus-parkinsonism complex": progressive hydrocephalus as a factor affecting extrapyramidal tract disorder-an experimental study. Oi S; Kim DS; Hidaka M Childs Nerv Syst; 2004 Jan; 20(1):37-40. PubMed ID: 14605838 [TBL] [Abstract][Full Text] [Related]
68. Ventricular-subcutaneous shunt for the treatment of experimental hydrocephalus in young rats: technical note. Santos MV; Garcia CA; Jardini EO; Romeiro TH; da Silva Lopes L; Machado HR; de Oliveira RS Childs Nerv Syst; 2016 Aug; 32(8):1507-11. PubMed ID: 26906479 [TBL] [Abstract][Full Text] [Related]
69. Anaerobic glycolysis preceding white-matter destruction in experimental neonatal hydrocephalus. Chumas PD; Drake JM; Del Bigio MR; Da Silva M; Tuor UI J Neurosurg; 1994 Mar; 80(3):491-501. PubMed ID: 8113862 [TBL] [Abstract][Full Text] [Related]
70. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. Bloch O; Auguste KI; Manley GT; Verkman AS J Cereb Blood Flow Metab; 2006 Dec; 26(12):1527-37. PubMed ID: 16552421 [TBL] [Abstract][Full Text] [Related]
71. Green tea polyphenol (-)-epigallocatechin gallate prevents oxidative damage on periventricular white matter of infantile rats with hydrocephalus. Etus V; Altug T; Belce A; Ceylan S Tohoku J Exp Med; 2003 Aug; 200(4):203-9. PubMed ID: 14580151 [TBL] [Abstract][Full Text] [Related]
72. Chronic hydrocephalus in rats and humans: white matter loss and behavior changes. Del Bigio MR; Wilson MJ; Enno T Ann Neurol; 2003 Mar; 53(3):337-46. PubMed ID: 12601701 [TBL] [Abstract][Full Text] [Related]
73. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus. Wagshul ME; McAllister JP; Rashid S; Li J; Egnor MR; Walker ML; Yu M; Smith SD; Zhang G; Chen JJ; Benveniste H Exp Neurol; 2009 Jul; 218(1):33-40. PubMed ID: 19348801 [TBL] [Abstract][Full Text] [Related]
74. Analysis of age-dependant alteration in the brain gene expression profile following induction of hydrocephalus in rats. Balasubramaniam J; Del Bigio MR Exp Neurol; 2002 Jan; 173(1):105-13. PubMed ID: 11771943 [TBL] [Abstract][Full Text] [Related]
75. Cerebrospinal fluid pathways from cisterns to ventricles in N-butyl cyanoacrylate-induced hydrocephalic rats. Park JH; Park YS; Suk JS; Park SW; Hwang SN; Nam TK; Kim YB; Lee WB J Neurosurg Pediatr; 2011 Dec; 8(6):640-6. PubMed ID: 22132924 [TBL] [Abstract][Full Text] [Related]
76. Pre- and postshunting magnetization transfer ratios are in accordance with neurological and behavioral changes in hydrocephalic immature rats. Rocha Catalão CH; Leme Correa DA; Bernardino Garcia CA; dos Santos AC; Garrido Salmon CE; Alves Rocha MJ; da Silva Lopes L Dev Neurosci; 2014; 36(6):520-31. PubMed ID: 25342396 [TBL] [Abstract][Full Text] [Related]
77. Nimodipine treatment does not benefit juvenile ferrets with kaolin-induced hydrocephalus. Di Curzio DL; Mao X; Baker A; Del Bigio MR Fluids Barriers CNS; 2018 May; 15(1):14. PubMed ID: 29720231 [TBL] [Abstract][Full Text] [Related]
78. Changes caused by hydrocephalus, induced by kaolin, in the corpus callosum of adult dogs. Cardoso EJ; Lachat JJ; Lopes LS; Santos AC; Colli BO Acta Cir Bras; 2011; 26 Suppl 2():8-14. PubMed ID: 22030808 [TBL] [Abstract][Full Text] [Related]
79. Environmental enrichment reduces brain damage in hydrocephalic immature rats. Catalão CHR; Shimizu GY; Tida JA; Garcia CAB; Dos Santos AC; Salmon CEG; Rocha MJA; da Silva Lopes L Childs Nerv Syst; 2017 Jun; 33(6):921-931. PubMed ID: 28382436 [TBL] [Abstract][Full Text] [Related]
80. An in vivo study with an MRI tracer method reveals the biophysical properties of interstitial fluid in the rat brain. Han H; Li K; Yan J; Zhu K; Fu Y Sci China Life Sci; 2012 Sep; 55(9):782-7. PubMed ID: 23015126 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]