BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10672878)

  • 1. Alterations of the electroretinogram by intravitreal kainic acid in the rat.
    Li S; Mizota A; Adachi-Usami E
    Jpn J Ophthalmol; 1999; 43(6):495-501. PubMed ID: 10672878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of kainic acid and NMDA on the pattern electroretinogram, the scotopic threshold response, the oscillatory potentials and the electroretinogram in the urethane anaesthetized cat.
    Vaegan ; Millar TJ
    Vision Res; 1994 May; 34(9):1111-25. PubMed ID: 8184556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protective effects of dietary docosahexaenoic acid against kainate-induced retinal degeneration in rats.
    Mizota A; Sato E; Taniai M; Adachi-Usami E; Nishikawa M
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):216-21. PubMed ID: 11133871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facilitatory and neurotoxic effects of intravitreal ornithine on the electroretinographic responses of albino rats.
    Mizota A; Sato E; Adachi-Usami E
    Ophthalmic Res; 2001; 33(2):91-7. PubMed ID: 11244354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kainic acid-mediated upregulation of matrix metalloproteinase-9 promotes retinal degeneration.
    Zhang X; Cheng M; Chintala SK
    Invest Ophthalmol Vis Sci; 2004 Jul; 45(7):2374-83. PubMed ID: 15223820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of electroretinogram and neurochemical aspects of GABAergic neurons of retina after intraocular injection of kainic acid in rats.
    Goto M; Inomata N; Ono H; Saito KI; Fukuda H
    Brain Res; 1981 May; 211(2):305-14. PubMed ID: 7237125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal A2A and A3 adenosine receptors modulate the components of the rat electroretinogram.
    Jonsson G; Eysteinsson T
    Vis Neurosci; 2017 Jan; 34():E001. PubMed ID: 28304243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supernormal ERG oscillatory potentials in transgenic rabbit with rhodopsin P347L mutation and retinal degeneration.
    Sakai T; Kondo M; Ueno S; Koyasu T; Komeima K; Terasaki H
    Invest Ophthalmol Vis Sci; 2009 Sep; 50(9):4402-9. PubMed ID: 19407007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Third-order neuronal responses contribute to shaping the negative electroretinogram in sodium iodate-treated rats.
    Tanaka M; Machida S; Ohtaka K; Tazawa Y; Nitta J
    Curr Eye Res; 2005 Jun; 30(6):443-53. PubMed ID: 16020277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methamphetamine exacerbates the toxic effect of kainic acid in the adult rat retina.
    Rodrigues LG; Tavares MA; Wood JP; Schmidt KG; Osborne NN
    Neurochem Int; 2004 Dec; 45(8):1133-41. PubMed ID: 15380623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of intravitreal injection of botulinum toxin on the electroretinogram of rats.
    Li S; Mizota A; Adachi-Usami E
    Ophthalmic Res; 1999; 31(6):392-8. PubMed ID: 10474067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of glutamate analogues and inhibitory neurotransmitters on the electroretinograms elicited by random sequence stimuli in rabbits.
    Horiguchi M; Suzuki S; Kondo M; Tanikawa A; Miyake Y
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2171-6. PubMed ID: 9761298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of N-methyl-DL-aspartic acid (NMDA)-sensitive neurons to generating oscillatory potentials in Royal College of Surgeons rats.
    Harada T; Machida S; Nishimura T; Kurosaka D
    Doc Ophthalmol; 2013 Oct; 127(2):131-40. PubMed ID: 23744447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alterations of the cat's electroretinogram induced by the lesioning of the indoleamine-accumulating amacrine cells.
    Hamasaki DI; Tucker GS; Maguire GW
    Ophthalmic Res; 1990; 22(1):19-30. PubMed ID: 2342775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the components of the rat dark-adapted electroretinogram by the three subtypes of GABA receptors.
    Möller A; Eysteinsson T
    Vis Neurosci; 2003; 20(5):535-42. PubMed ID: 14977332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of subretinal injection on retinal structure and function in a rat oxygen-induced retinopathy model.
    Becker S; Wang H; Stoddard GJ; Hartnett ME
    Mol Vis; 2017; 23():832-843. PubMed ID: 29259390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of the effects of kainic acid on somatostatin, substance P and dopamine in the rabbit retina.
    Sagar SM; Weinstein L; Reinhard JF; Martin JB
    Brain Res; 1983 Nov; 278(1-2):109-15. PubMed ID: 6196086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intraretinal analysis of the a-wave of the electroretinogram (ERG) in dark-adapted intact cat retina.
    Kang Derwent JJ; Linsenmeier RA
    Vis Neurosci; 2001; 18(3):353-63. PubMed ID: 11497412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intraocular injection of kainic acid does not abolish the circadian rhythm of arylalkylamine N-acetyltransferase mRNA in rat photoreceptors.
    Sakamoto K; Liu C; Kasamatsu M; Iuvone PM; Tosini G
    Mol Vis; 2006 Feb; 12():117-24. PubMed ID: 16518309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of kainic acid on rat body temperature: unmasking by dizocilpine.
    Ahlenius S; Oprica M; Eriksson C; Winblad B; Schultzberg M
    Neuropharmacology; 2002 Jul; 43(1):28-35. PubMed ID: 12213256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.