These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 10672904)

  • 21. In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive.
    Jordan P; Mannervik M; Tora L; Carmo-Fonseca M
    J Cell Biol; 1996 Apr; 133(2):225-34. PubMed ID: 8609157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activation of the mitogen-activated protein kinase pathway in U937 leukemic cells induces phosphorylation of the amino terminus of the TATA-binding protein.
    Biggs JR; Ahn NG; Kraft AS
    Cell Growth Differ; 1998 Aug; 9(8):667-76. PubMed ID: 9716183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Species specificity of ribosomal gene transcription: a factor associated with human RNA polymerase I prevents transcription of mouse rDNA.
    Eberhard D; Grummt I
    DNA Cell Biol; 1996 Feb; 15(2):167-73. PubMed ID: 8634144
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A kinase activity associated with simian virus 40 large T antigen phosphorylates upstream binding factor (UBF) and promotes formation of a stable initiation complex between UBF and SL1.
    Zhai W; Comai L
    Mol Cell Biol; 1999 Apr; 19(4):2791-802. PubMed ID: 10082545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RRN11 encodes the third subunit of the complex containing Rrn6p and Rrn7p that is essential for the initiation of rDNA transcription by yeast RNA polymerase I.
    Lalo D; Steffan JS; Dodd JA; Nomura M
    J Biol Chem; 1996 Aug; 271(35):21062-7. PubMed ID: 8702872
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regulation of RNA polymerase I transcription in response to F9 embryonal carcinoma stem cell differentiation.
    Alzuherri HM; White RJ
    J Biol Chem; 1999 Feb; 274(7):4328-34. PubMed ID: 9933634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Developmental changes in RNA polymerase I and TATA box-binding protein during early Xenopus embryogenesis.
    Bell P; Scheer U
    Exp Cell Res; 1999 Apr; 248(1):122-35. PubMed ID: 10094820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1.
    Günes C; Lichtsteiner S; Vasserot AP; Englert C
    Cancer Res; 2000 Apr; 60(8):2116-21. PubMed ID: 10786671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TBP-associated factors are not generally required for transcriptional activation in yeast.
    Moqtaderi Z; Bai Y; Poon D; Weil PA; Struhl K
    Nature; 1996 Sep; 383(6596):188-91. PubMed ID: 8774887
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of inhibition of RNA polymerase I transcription by DNA-dependent protein kinase.
    Michaelidis TM; Grummt I
    Biol Chem; 2002 Nov; 383(11):1683-90. PubMed ID: 12530533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of TATA binding protein (TBP) in yeast ribosomal dna transcription by RNA polymerase I: defects in the dual functions of transcription factor UAF cannot be suppressed by TBP.
    Siddiqi I; Keener J; Vu L; Nomura M
    Mol Cell Biol; 2001 Apr; 21(7):2292-7. PubMed ID: 11259579
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Early gene expression of both RNA polymerase I transcription factors UBF1 and UBF2 precedes ribosomal RNA synthesis during lymphocyte mitogenic stimulation.
    Cabart P; Kalousek I
    Cell Mol Biol (Noisy-le-grand); 1998 Mar; 44(2):343-50. PubMed ID: 9593585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The biochemistry of transcription in eukaryotes: a paradigm for multisubunit regulatory complexes.
    Tjian R
    Philos Trans R Soc Lond B Biol Sci; 1996 Apr; 351(1339):491-9. PubMed ID: 8735271
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning and expression of human TAFII250: a TBP-associated factor implicated in cell-cycle regulation.
    Ruppert S; Wang EH; Tjian R
    Nature; 1993 Mar; 362(6416):175-9. PubMed ID: 7680771
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DNA binding site selection by RNA polymerase II TAFs: a TAF(II)250-TAF(II)150 complex recognizes the initiator.
    Chalkley GE; Verrijzer CP
    EMBO J; 1999 Sep; 18(17):4835-45. PubMed ID: 10469661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II.
    Wieczorek E; Brand M; Jacq X; Tora L
    Nature; 1998 May; 393(6681):187-91. PubMed ID: 9603525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. hTFIIIB-beta stably binds to pol II promoters and recruits RNA polymerase III in a hTFIIIC1 dependent way.
    Kober I; Teichmann M; Seifart KH
    J Mol Biol; 1998 Nov; 284(1):7-20. PubMed ID: 9811538
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TAFs mediate transcriptional activation and promoter selectivity.
    Verrijzer CP; Tjian R
    Trends Biochem Sci; 1996 Sep; 21(9):338-42. PubMed ID: 8870497
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multiple protein-protein interactions by RNA polymerase I-associated factor PAF49 and role of PAF49 in rRNA transcription.
    Yamamoto K; Yamamoto M; Hanada K; Nogi Y; Matsuyama T; Muramatsu M
    Mol Cell Biol; 2004 Jul; 24(14):6338-49. PubMed ID: 15226435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genomic localization of the human genes TAF1A, TAF1B and TAF1C, encoding TAF(I)48, TAF(I)63 and TAF(I)110 subunits of class I general transcription initiation factor SL1.
    Di Pietro C; Rapisarda A; Amico V; Bonaiuto C; Viola A; Scalia M; Motta S; Amato A; Engel H; Messina A; Sichel G; Grzeschik K; Purrello M
    Cytogenet Cell Genet; 2000; 89(1-2):133-6. PubMed ID: 10894955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.