BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10673022)

  • 21. Inhibitory effect of supramolecular polyrotaxane-dipeptide conjugates on digested peptide uptake via intestinal human peptide transporter.
    Yui N; Ooya T; Kawashima T; Saito Y; Tamai I; Sai Y; Tsuji A
    Bioconjug Chem; 2002; 13(3):582-7. PubMed ID: 12009949
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Supramolecular design for multivalent interaction: maltose mobility along polyrotaxane enhanced binding with concanavalin A.
    Ooya T; Eguchi M; Yui N
    J Am Chem Soc; 2003 Oct; 125(43):13016-7. PubMed ID: 14570461
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid binding of concanavalin A and maltose-polyrotaxane conjugates due to mobile motion of alpha-cyclodextrins threaded onto a poly(ethylene glycol).
    Ooya T; Utsunomiya H; Eguchi M; Yui N
    Bioconjug Chem; 2005; 16(1):62-9. PubMed ID: 15656576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and characterization of polyrotaxanes consisting of cationic alpha-cyclodextrins threaded on poly[(ethylene oxide)-ran-(propylene oxide)] as gene carriers.
    Yang C; Wang X; Li H; Goh SH; Li J
    Biomacromolecules; 2007 Nov; 8(11):3365-74. PubMed ID: 17929967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acetylation of Cyclodextrin-Threaded Polyrotaxanes Yields Temperature-Responsive Phase Transition and Coacervate Formation Properties.
    Tonegawa A; Tamura A; Yui N
    Macromol Rapid Commun; 2020 Sep; 41(17):e2000322. PubMed ID: 32767501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cationic Polyrotaxanes as a Feasible Framework for the Intracellular Delivery and Sustainable Activity of Anionic Enzymes: A Comparison Study with Methacrylate-Based Polycations.
    Tamura A; Ikeda G; Nishida K; Yui N
    Macromol Biosci; 2015 Aug; 15(8):1134-45. PubMed ID: 25923376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of Novel Core Cross-Linked Star-Based Polyrotaxane End-Capped via "CuAAC" Click Chemistry.
    Fu Q; Ren JM; Tan S; Xu J; Qiao GG
    Macromol Rapid Commun; 2012 Dec; 33(24):2109-14. PubMed ID: 22965763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oligo(ethylene glycol)-modified β-cyclodextrin-based polyrotaxanes for simultaneously modulating solubility and cellular internalization efficiency.
    Tamura A; Ohashi M; Yui N
    J Biomater Sci Polym Ed; 2017; 28(10-12):1124-1139. PubMed ID: 28299982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery.
    Li J; Loh XJ
    Adv Drug Deliv Rev; 2008 Jun; 60(9):1000-17. PubMed ID: 18413280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of cyclodextrin-based polyrotaxanes and polycatenanes for supramolecular pharmaceutical sciences.
    Higashi T; Taharabaru T; Motoyama K
    Carbohydr Polym; 2024 Aug; 337():122143. PubMed ID: 38710552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro biocompatibility assessment of sulfonated polyrotaxane-immobilized polyurethane surfaces.
    Park HD; Lee WK; Ooya T; Park KD; Kim YH; Yui N
    J Biomed Mater Res A; 2003 Sep; 66(3):596-604. PubMed ID: 12918043
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of a polydisperse polyrotaxane based on poly(ethylene oxide) and α-cyclodextrins using nanoelectrospray and LTQ-Orbitrap.
    Przybylski C; Jarroux N
    Anal Chem; 2011 Nov; 83(22):8460-7. PubMed ID: 21958205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Threaded macromolecules as a versatile framework for biomaterials.
    Tamura A; Yui N
    Chem Commun (Camb); 2014 Nov; 50(88):13433-46. PubMed ID: 25036737
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two independent ways of preparing hypercharged hydrolyzable polyaminorotaxane.
    Pérès B; Richardeau N; Jarroux N; Guégan P; Auvray L
    Biomacromolecules; 2008 Jul; 9(7):2007-13. PubMed ID: 18517251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin.
    Huh KM; Cho YW; Chung H; Kwon IC; Jeong SY; Ooya T; Lee WK; Sasaki S; Yui N
    Macromol Biosci; 2004 Feb; 4(2):92-9. PubMed ID: 15468199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biocleavable polyrotaxane-plasmid DNA polyplex for enhanced gene delivery.
    Ooya T; Choi HS; Yamashita A; Yui N; Sugaya Y; Kano A; Maruyama A; Akita H; Ito R; Kogure K; Harashima H
    J Am Chem Soc; 2006 Mar; 128(12):3852-3. PubMed ID: 16551060
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradable micelles/polymersomes from fumaric/sebacic acids and poly(ethylene glycol).
    Najafi F; Sarbolouki MN
    Biomaterials; 2003 Mar; 24(7):1175-82. PubMed ID: 12527258
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Intracellularly Degradable Polyrotaxanes for Therapeutic Applications].
    Tamura A
    Yakugaku Zasshi; 2019; 139(2):143-155. PubMed ID: 30713223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibroblast adhesion and proliferation on poly(ethylene glycol) hydrogels crosslinked by hydrolyzable polyrotaxane.
    Watanabe J; Ooya T; Nitta KH; Park KD; Kim YH; Yui N
    Biomaterials; 2002 Oct; 23(20):4041-8. PubMed ID: 12182305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.