These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 10673117)

  • 21. Age-related change in the damage morphology of human cortical bone and its role in bone fragility.
    Diab T; Condon KW; Burr DB; Vashishth D
    Bone; 2006 Mar; 38(3):427-31. PubMed ID: 16260195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite element prediction of fatigue damage growth in cancellous bone.
    Hambli R; Frikha S; Toumi H; Tavares JM
    Comput Methods Biomech Biomed Engin; 2016; 19(5):563-70. PubMed ID: 26077722
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tensile and compressive properties of cancellous bone.
    Røhl L; Larsen E; Linde F; Odgaard A; Jørgensen J
    J Biomech; 1991; 24(12):1143-9. PubMed ID: 1769979
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tensile fracture of cancellous bone.
    Carter DR; Schwab GH; Spengler DM
    Acta Orthop Scand; 1980 Oct; 51(5):733-41. PubMed ID: 7468167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses.
    Zioupos P; Currey JD; Mirza MS; Barton DC
    Philos Trans R Soc Lond B Biol Sci; 1995 Mar; 347(1322):383-96. PubMed ID: 7597104
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trabecular bone exhibits fully linear elastic behavior and yields at low strains.
    Keaveny TM; Guo XE; Wachtel EF; McMahon TA; Hayes WC
    J Biomech; 1994 Sep; 27(9):1127-36. PubMed ID: 7929462
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does microdamage accumulation affect the mechanical properties of bone?
    Burr DB; Turner CH; Naick P; Forwood MR; Ambrosius W; Hasan MS; Pidaparti R
    J Biomech; 1998 Apr; 31(4):337-45. PubMed ID: 9672087
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bone stiffness changes due to microdamage under different loadings.
    Pidaparti RM; Liu Y
    Biomed Mater Eng; 1997; 7(3):193-203. PubMed ID: 9262832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microdamage propagation in trabecular bone due to changes in loading mode.
    Wang X; Niebur GL
    J Biomech; 2006; 39(5):781-90. PubMed ID: 16488217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Damage analysis of human cortical bone under compressive and tensile loadings.
    Maghami E; Moore JP; Josephson TO; Najafi AR
    Comput Methods Biomech Biomed Engin; 2022 Feb; 25(3):342-357. PubMed ID: 35014938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inelastic deformation and microcracking process in human dentin.
    Eltit F; Ebacher V; Wang R
    J Struct Biol; 2013 Aug; 183(2):141-8. PubMed ID: 23583703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resistance to crack growth in human cortical bone is greater in shear than in tension.
    Norman TL; Nivargikar SV; Burr DB
    J Biomech; 1996 Aug; 29(8):1023-31. PubMed ID: 8817369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Whole bone testing in small animals: systematic characterization of the mechanical properties of different rodent bones available for rat fracture models.
    Prodinger PM; Foehr P; Bürklein D; Bissinger O; Pilge H; Kreutzer K; von Eisenhart-Rothe R; Tischer T
    Eur J Med Res; 2018 Feb; 23(1):8. PubMed ID: 29444703
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postfailure modulus strongly affects microcracking and mechanical property change in human iliac cancellous bone: a study using a 2D nonlinear finite element method.
    Wang X; Zauel RR; Fyhrie DP
    J Biomech; 2008 Aug; 41(12):2654-8. PubMed ID: 18672244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical and morphological effects of strain rate on fatigue of compact bone.
    Schaffler MB; Radin EL; Burr DB
    Bone; 1989; 10(3):207-14. PubMed ID: 2803855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sensitivity of multiple damage parameters to compressive overload in cortical bone.
    Morgan EF; Lee JJ; Keaveny TM
    J Biomech Eng; 2005 Aug; 127(4):557-62. PubMed ID: 16121524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Damage mechanisms and failure modes of cortical bone under components of physiological loading.
    George WT; Vashishth D
    J Orthop Res; 2005 Sep; 23(5):1047-53. PubMed ID: 16140189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone.
    Fantner GE; Birkedal H; Kindt JH; Hassenkam T; Weaver JC; Cutroni JA; Bosma BL; Bawazer L; Finch MM; Cidade GA; Morse DE; Stucky GD; Hansma PK
    Bone; 2004 Nov; 35(5):1013-22. PubMed ID: 15542025
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.