BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10673162)

  • 21. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.
    Smith CF; Mackessy SP
    Toxicon; 2016 Sep; 120():110-23. PubMed ID: 27496060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local prey community composition and genetic distance predict venom divergence among populations of the northern Pacific rattlesnake (Crotalus oreganus).
    Holding ML; Margres MJ; Rokyta DR; Gibbs HL
    J Evol Biol; 2018 Oct; 31(10):1513-1528. PubMed ID: 29959877
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conflict and assessment in a predator-prey system: ground squirrels versus rattlesnakes.
    Swaisgood RR; Owings DH; Rowe MP
    Anim Behav; 1999 May; 57(5):1033-1044. PubMed ID: 10328789
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Donning your enemy's cloak: ground squirrels exploit rattlesnake scent to reduce predation risk.
    Clucas B; Owings DH; Rowe MP
    Proc Biol Sci; 2008 Apr; 275(1636):847-52. PubMed ID: 18198147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Venom variation in hemostasis of the southern Pacific rattlesnake (Crotalus oreganus helleri): isolation of hellerase.
    Salazar AM; Guerrero B; Cantu B; Cantu E; Rodríguez-Acosta A; Pérez JC; Galán JA; Tao A; Sánchez EE
    Comp Biochem Physiol C Toxicol Pharmacol; 2009 Apr; 149(3):307-16. PubMed ID: 18804187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The rattling sound of rattlesnakes (Crotalus viridis) as a communicative resource for ground squirrels (Spermophilus beecheyi) and burrowing owls (Athene cunicularia).
    Owings DH; Rowe MP; Rundus AS
    J Comp Psychol; 2002 Jun; 116(2):197-205. PubMed ID: 12083617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of the immunogenicity and antigenic composition of ten Central American snake venoms.
    Anderson SG; Gutiérrez JM; Ownby CL
    Toxicon; 1993 Aug; 31(8):1051-9. PubMed ID: 8212043
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzyme-linked immunosorbant assay (ELISA) of size-selected crotalid venom antigens by Wyeth's polyvalent antivenom.
    Schaeffer RC; Randall H; Resk J; Carlson RW
    Toxicon; 1988; 26(1):67-76. PubMed ID: 3347932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fibrinogenolytic proteases from the venoms of juvenile and adult northern Pacific rattlesnakes (Crotalus viridis oreganus).
    Mackessy SP
    Comp Biochem Physiol B; 1993 Sep; 106(1):181-9. PubMed ID: 8403847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ground squirrels use an infrared signal to deter rattlesnake predation.
    Rundus AS; Owings DH; Joshi SS; Chinn E; Giannini N
    Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14372-6. PubMed ID: 17704254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The detection of hemorrhagic proteins in snake venoms using monoclonal antibodies against Virginia opossum (Didelphis virginiana) serum.
    Sánchez EE; García C; Pérez JC; De La Zerda SJ
    Toxicon; 1998 Oct; 36(10):1451-9. PubMed ID: 9723843
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An indirect haemolytic assay for assessing antivenoms.
    al-Abdulla IH; Sidki AM; Landon J
    Toxicon; 1991; 29(8):1043-6. PubMed ID: 1949062
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antigenic relationships of fractionated western diamondback rattlesnake (Crotalus atrox) hemorrhagic toxins and other rattlesnake venoms as indicated by monoclonal antibodies.
    Martinez RA; Huang SY; Perez JC
    Toxicon; 1989; 27(2):239-45. PubMed ID: 2718192
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotypic and functional variation in venom and venom resistance of two sympatric rattlesnakes and their prey.
    Robinson KE; Holding ML; Whitford MD; Saviola AJ; Yates JR; Clark RW
    J Evol Biol; 2021 Sep; 34(9):1447-1465. PubMed ID: 34322920
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mojave toxin in venom of Crotalus helleri (Southern Pacific Rattlesnake): molecular and geographic characterization.
    French WJ; Hayes WK; Bush SP; Cardwell MD; Bader JO; Rael ED
    Toxicon; 2004 Dec; 44(7):781-91. PubMed ID: 15500854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ability of antiserum to myotoxin alpha from prairie rattlesnake (Crotalus viridis viridis) venom to neutralize local myotoxicity and lethal effects of myotoxin alpha and homologous crude venom.
    Ownby CL; Odell GV; Woods WM; Colberg TR
    Toxicon; 1983; 21(1):35-45. PubMed ID: 6845385
    [No Abstract]   [Full Text] [Related]  

  • 37. A new method for quantitating hemorrhage induced by rattlesnake venoms: ability of polyvalent antivenom to neutralize hemorrhagic activity.
    Ownby CL; Colberg TR; Odell GV
    Toxicon; 1984; 22(2):227-33. PubMed ID: 6729841
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The distribution among ophidian venoms of a toxin isolated from the venom of the Mojave rattlesnake (Crotalus scutulatus scutulatus).
    Weinstein SA; Minton SA; Wilde CE
    Toxicon; 1985; 23(5):825-44. PubMed ID: 3937297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A symphony of destruction: Dynamic differential fibrinogenolytic toxicity by rattlesnake (Crotalus and Sistrurus) venoms.
    Seneci L; Zdenek CN; Bourke LA; Cochran C; Sánchez EE; Neri-Castro E; Bénard-Valle M; Alagón A; Frank N; Fry BG
    Comp Biochem Physiol C Toxicol Pharmacol; 2021 Jul; 245():109034. PubMed ID: 33766656
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Successful treatment of crotalid-induced neurotoxicity with a new polyspecific crotalid Fab antivenom.
    Clark RF; Williams SR; Nordt SP; Boyer-Hassen LV
    Ann Emerg Med; 1997 Jul; 30(1):54-7. PubMed ID: 9209226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.