BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 10673369)

  • 1. Marked increase in membranolytic selectivity of novel cyclic tachyplesins constrained with an antiparallel two-beta strand cystine knot framework.
    Tam JP; Lu YA; Yang JL
    Biochem Biophys Res Commun; 2000 Jan; 267(3):783-90. PubMed ID: 10673369
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation and antimicrobial activity of linear derivatives of tachyplesin lacking disulfide bonds.
    Rao AG
    Arch Biochem Biophys; 1999 Jan; 361(1):127-34. PubMed ID: 9882437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membranolytic selectivity of cystine-stabilized cyclic protegrins.
    Tam JP; Wu C; Yang JL
    Eur J Biochem; 2000 Jun; 267(11):3289-300. PubMed ID: 10824115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tachyplesin I as a model peptide for antiparallel beta-sheet DNA binding motif.
    Yonezawa A; Sugiura Y
    Nucleic Acids Symp Ser; 1992; (27):161-2. PubMed ID: 1289803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of salt-insensitive glycine-rich antimicrobial peptides with cyclic tricystine structures.
    Tam JP; Lu YA; Yang JL
    Biochemistry; 2000 Jun; 39(24):7159-69. PubMed ID: 10852714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macrocyclic hairpin mimetics of the cationic antimicrobial peptide protegrin I: a new family of broad-spectrum antibiotics.
    Shankaramma SC; Athanassiou Z; Zerbe O; Moehle K; Mouton C; Bernardini F; Vrijbloed JW; Obrecht D; Robinson JA
    Chembiochem; 2002 Nov; 3(11):1126-33. PubMed ID: 12404639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic structure of disulfide-removed linear analogs of tachyplesin-I in the lipid bilayer from solid-state NMR.
    Doherty T; Waring AJ; Hong M
    Biochemistry; 2008 Jan; 47(4):1105-16. PubMed ID: 18163648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-activity relationships of de novo designed cyclic antimicrobial peptides based on gramicidin S.
    Lee DL; Hodges RS
    Biopolymers; 2003; 71(1):28-48. PubMed ID: 12712499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides.
    Tam JP; Lu YA; Yang JL; Chiu KW
    Proc Natl Acad Sci U S A; 1999 Aug; 96(16):8913-8. PubMed ID: 10430870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and synthesis of cyclic disulfide-bonded antibacterial peptides on the basis of the alpha helical domain of Tenecin 1, an insect defensin.
    Ahn HS; Cho W; Kim JM; Joshi BP; Park JW; Lohani CR; Cho H; Lee KH
    Bioorg Med Chem; 2008 Apr; 16(7):4127-37. PubMed ID: 18243710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformations and orientations of aromatic amino acid residues of tachyplesin I in phospholipid membranes.
    Oishi O; Yamashita S; Nishimoto E; Lee S; Sugihara G; Ohno M
    Biochemistry; 1997 Apr; 36(14):4352-9. PubMed ID: 9100032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents.
    Conlon JM; Al-Ghaferi N; Abraham B; Leprince J
    Methods; 2007 Aug; 42(4):349-57. PubMed ID: 17560323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and synthesis of novel antimicrobial peptides on the basis of alpha helical domain of Tenecin 1, an insect defensin protein, and structure-activity relationship study.
    Ahn HS; Cho W; Kang SH; Ko SS; Park MS; Cho H; Lee KH
    Peptides; 2006 Apr; 27(4):640-8. PubMed ID: 16226345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlations of cationic charges with salt sensitivity and microbial specificity of cystine-stabilized beta -strand antimicrobial peptides.
    Tam JP; Lu YA; Yang JL
    J Biol Chem; 2002 Dec; 277(52):50450-6. PubMed ID: 12399464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of potent, non-toxic antimicrobial agents based upon the naturally occurring frog skin peptides, ascaphin-8 and peptide XT-7.
    Conlon JM; Galadari S; Raza H; Condamine E
    Chem Biol Drug Des; 2008 Jul; 72(1):58-64. PubMed ID: 18554256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthetic peptides corresponding to the beta-hairpin loop of rabbit defensin NP-2 show antimicrobial activity.
    Thennarasu S; Nagaraj R
    Biochem Biophys Res Commun; 1999 Jan; 254(2):281-3. PubMed ID: 9918829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudin-2: an antimicrobial peptide with low hemolytic activity from the skin of the paradoxical frog.
    Olson L; Soto AM; Knoop FC; Conlon JM
    Biochem Biophys Res Commun; 2001 Nov; 288(4):1001-5. PubMed ID: 11689009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution structure of Alo-3: a new knottin-type antifungal peptide from the insect Acrocinus longimanus.
    Barbault F; Landon C; Guenneugues M; Meyer JP; Schott V; Dimarcq JL; Vovelle F
    Biochemistry; 2003 Dec; 42(49):14434-42. PubMed ID: 14661954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-Activity and -Toxicity Relationships of the Antimicrobial Peptide Tachyplesin-1.
    Edwards IA; Elliott AG; Kavanagh AM; Blaskovich MAT; Cooper MA
    ACS Infect Dis; 2017 Dec; 3(12):917-926. PubMed ID: 28960954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional structure of RTD-1, a cyclic antimicrobial defensin from Rhesus macaque leukocytes.
    Trabi M; Schirra HJ; Craik DJ
    Biochemistry; 2001 Apr; 40(14):4211-21. PubMed ID: 11284676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.