BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10673431)

  • 1. The folding pathway of the cell-cycle regulatory protein p13suc1: clues for the mechanism of domain swapping.
    Schymkowitz JW; Rousseau F; Irvine LR; Itzhaki LS
    Structure; 2000 Jan; 8(1):89-100. PubMed ID: 10673431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the unfolding pathway of the cell-cycle protein p13suc1 by molecular dynamics simulations: implications for domain swapping.
    Alonso DO; Alm E; Daggett V
    Structure; 2000 Jan; 8(1):101-10. PubMed ID: 10673427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability and folding of the cell cycle regulatory protein, p13(suc1).
    Rousseau F; Schymkowitz JW; Sánchez del Pino M; Itzhaki LS
    J Mol Biol; 1998 Nov; 284(2):503-19. PubMed ID: 9813133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural role of the proline residues of the beta-hinge region of p13suc1 as revealed by site-directed mutagenesis and fluorescence studies.
    Simeoni F; Masotti L; Neyroz P
    Biochemistry; 2001 Jul; 40(27):8030-42. PubMed ID: 11434772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence conservation provides the best prediction of the role of proline residues in p13suc1.
    Schymkowitz JW; Rousseau F; Itzhaki LS
    J Mol Biol; 2000 Aug; 301(1):199-204. PubMed ID: 10926502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The structure of the transition state for folding of domain-swapped dimeric p13suc1.
    Rousseau F; Schymkowitz JW; Wilkinson HR; Itzhaki LS
    Structure; 2002 May; 10(5):649-57. PubMed ID: 12015148
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the yeast cell-cycle control protein, p13suc1, in a strand-exchanged dimer.
    Khazanovich N; Bateman K; Chernaia M; Michalak M; James M
    Structure; 1996 Mar; 4(3):299-309. PubMed ID: 8805536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weak cooperativity in the core causes a switch in folding mechanism between two proteins of the cks family.
    Seeliger MA; Breward SE; Itzhaki LS
    J Mol Biol; 2003 Jan; 325(1):189-99. PubMed ID: 12473461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch.
    Bourne Y; Arvai AS; Bernstein SL; Watson MH; Reed SI; Endicott JE; Noble ME; Johnson LN; Tainer JA
    Proc Natl Acad Sci U S A; 1995 Oct; 92(22):10232-6. PubMed ID: 7479758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediates control domain swapping during folding of p13suc1.
    Rousseau F; Schymkowitz JW; Wilkinson HR; Itzhaki LS
    J Biol Chem; 2004 Feb; 279(9):8368-77. PubMed ID: 14662764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational studies of the reversible domain swapping of p13suc1.
    Chahine J; Cheung MS
    Biophys J; 2005 Oct; 89(4):2693-700. PubMed ID: 16055542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution NMR study of the monomeric form of p13suc1 protein sheds light on the hinge region determining the affinity for a phosphorylated substrate.
    Odaert B; Landrieu I; Dijkstra K; Schuurman-Wolters G; Casteels P; Wieruszeski JM; Inze D; Scheek R; Lippens G
    J Biol Chem; 2002 Apr; 277(14):12375-81. PubMed ID: 11812792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Folding and association of the human cell cycle regulatory proteins ckshs1 and ckshs2.
    Seeliger MA; Schymkowitz JW; Rousseau F; Wilkinson HR; Itzhaki LS
    Biochemistry; 2002 Jan; 41(4):1202-10. PubMed ID: 11802719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues.
    Rousseau F; Schymkowitz JW; Wilkinson HR; Itzhaki LS
    Proc Natl Acad Sci U S A; 2001 May; 98(10):5596-601. PubMed ID: 11344301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cell cycle and suc1: from structure to function?
    Endicott JA; Nurse P
    Structure; 1995 Apr; 3(4):321-5. PubMed ID: 7613861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation-condensation mechanism for protein folding.
    Itzhaki LS; Otzen DE; Fersht AR
    J Mol Biol; 1995 Nov; 254(2):260-88. PubMed ID: 7490748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding and unfolding of gammaTIM monomers and dimers.
    Patel B; Finke JM
    Biophys J; 2007 Oct; 93(7):2457-71. PubMed ID: 17545246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of the major transition state for folding of an FF domain from experiment and simulation.
    Jemth P; Day R; Gianni S; Khan F; Allen M; Daggett V; Fersht AR
    J Mol Biol; 2005 Jul; 350(2):363-78. PubMed ID: 15935381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary crystallographic analysis of the Cks protein p13(suc1P90AP92A) from Schizosacharromyces pombe.
    Kelly JA; Williams EA; Wilce MC
    Eur Biophys J; 2005 Jul; 34(5):430-3. PubMed ID: 15843986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational analysis of the folding transition state of the C-terminal domain of ribosomal protein L9: a protein with an unusual beta-sheet topology.
    Li Y; Gupta R; Cho JH; Raleigh DP
    Biochemistry; 2007 Jan; 46(4):1013-21. PubMed ID: 17240985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.