These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 10673503)

  • 61. Genome wide decrease of DNA replication eye density at the midblastula transition of
    Platel M; Narassimprakash H; Ciardo D; Haccard O; Marheineke K
    Cell Cycle; 2019 Jul; 18(13):1458-1472. PubMed ID: 31130065
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Antisense knockdown of cyclin E does not affect the midblastula transition in Xenopus laevis embryos.
    Slevin MK; Lyons-Levy G; Weeks DL; Hartley RS
    Cell Cycle; 2005 Oct; 4(10):1396-402. PubMed ID: 16131839
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Tunicamycin-inducible polypeptide synthesis during Xenopus laevis embryogenesis.
    Winning RS; Bols NC; Heikkila JJ
    Differentiation; 1991 Apr; 46(3):167-72. PubMed ID: 1916065
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Developmental role of HMGN proteins in Xenopus laevis.
    Körner U; Bustin M; Scheer U; Hock R
    Mech Dev; 2003 Oct; 120(10):1177-92. PubMed ID: 14568106
    [TBL] [Abstract][Full Text] [Related]  

  • 65. 5-Azacytidine, DNA methylation, and differentiation.
    Taylor SM; Constantinides PA; Jones PA
    Curr Top Microbiol Immunol; 1984; 108():115-27. PubMed ID: 6201321
    [No Abstract]   [Full Text] [Related]  

  • 66. The flip side of DNA methylation.
    Verdine GL
    Cell; 1994 Jan; 76(2):197-200. PubMed ID: 8293456
    [No Abstract]   [Full Text] [Related]  

  • 67. A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription.
    Newport J; Kirschner M
    Cell; 1982 Oct; 30(3):687-96. PubMed ID: 7139712
    [TBL] [Abstract][Full Text] [Related]  

  • 68. The inheritance of methylation patterns in vertebrates.
    Wigler MH
    Cell; 1981 May; 24(2):285-6. PubMed ID: 7195315
    [No Abstract]   [Full Text] [Related]  

  • 69. Expression of exogenously introduced bacterial chloramphenicol acetyltransferase genes in Xenopus laevis embryos before the midblastula transition.
    Shiokawa K; Yamana K; Fu Y; Atsuchi Y; Hosokawa K
    Rouxs Arch Dev Biol; 1990 Mar; 198(6):322-329. PubMed ID: 28305411
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development.
    Sun L; Bertke MM; Champion MM; Zhu G; Huber PW; Dovichi NJ
    Sci Rep; 2014 Mar; 4():4365. PubMed ID: 24626130
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Replicative DNA methylation in animals and higher plants.
    Vanyushin BF
    Curr Top Microbiol Immunol; 1984; 108():99-114. PubMed ID: 6370615
    [No Abstract]   [Full Text] [Related]  

  • 72. DNA damage signaling in early Xenopus embryos.
    Peng A; Lewellyn AL; Maller JL
    Cell Cycle; 2008 Jan; 7(1):3-6. PubMed ID: 18196968
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Marked Alteration at Midblastula Transition in the Effect of Lithium on Formation of the Larval Body Pattern of Xenopus laevis: (midblastula transition/LiCl/pattern formation/half-egg fragment/Xenopus laevis).
    Yamaguchi Y; Shinagawa A
    Dev Growth Differ; 1989 Dec; 31(6):531-541. PubMed ID: 37281688
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Transcription-dependent induction of G1 phase during the zebra fish midblastula transition.
    Zamir E; Kam Z; Yarden A
    Mol Cell Biol; 1997 Feb; 17(2):529-36. PubMed ID: 9001205
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Depletion of TRDMT1 affects 5-methylcytosine modification of mRNA and inhibits HEK293 cell proliferation and migration.
    Xue S; Xu H; Sun Z; Shen H; Chen S; Ouyang J; Zhou Q; Hu X; Cui H
    Biochem Biophys Res Commun; 2019 Nov; 520(1):60-66. PubMed ID: 31570165
    [TBL] [Abstract][Full Text] [Related]  

  • 76. 5-methylcytosine, gene regulation, and cancer.
    Riggs AD; Jones PA
    Adv Cancer Res; 1983; 40():1-30. PubMed ID: 6197868
    [No Abstract]   [Full Text] [Related]  

  • 77. Microinjection of DNA Constructs into
    Yasuoka Y; Taira M
    Cold Spring Harb Protoc; 2019 Jan; 2019(1):. PubMed ID: 30131366
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Temporal and spatial regulation of fibronectin in early Xenopus development.
    Lee G; Hynes R; Kirschner M
    Cell; 1984 Mar; 36(3):729-40. PubMed ID: 6697394
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Gene Expression from Endogenou and Exogenously-introduced DNAs in Early Embryogenesis of Xenopus laevis: (Xenopus embryogenesis/nuclear RNA synthesis/midblastula transition/CAT gene injection/actin-CAT fusion gene).
    Shiokawa K
    Dev Growth Differ; 1991 Feb; 33(1):1-8. PubMed ID: 37281369
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Isolation of the Xenopus nrp-1 gene and analysis of its expression following the midblastula transition in injected Xenopus embryos.
    O'Connell ML; Rebbert ML; Dawid IB
    Dev Growth Differ; 1996 Aug; 38(4):439-448. PubMed ID: 37281116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.