These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 10673556)

  • 1. Responses of neurones of the rat suprachiasmatic nucleus to retinal illumination under photopic and scotopic conditions.
    Aggelopoulos NC; Meissl H
    J Physiol; 2000 Feb; 523 Pt 1(Pt 1):211-22. PubMed ID: 10673556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of suprachiasmatic nucleus neurons to light and dark adaptation: relative contributions of melanopsin and rod-cone inputs.
    Drouyer E; Rieux C; Hut RA; Cooper HM
    J Neurosci; 2007 Sep; 27(36):9623-31. PubMed ID: 17804622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic input from the retina to the suprachiasmatic nucleus changes with the light-dark cycle in the Syrian hamster.
    Cui LN; Dyball RE
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):483-93. PubMed ID: 8961189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic dissection of rod and cone pathways mediating light responses and receptive fields of ganglion cells in the mouse retina.
    Seilheimer RL; Sabharwal J; Wu SM
    Vision Res; 2020 Feb; 167():15-23. PubMed ID: 31887538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The rat suprachiasmatic nucleus: the master clock ticks at 30 Hz.
    Tsuji T; Tsuji C; Ludwig M; Leng G
    J Physiol; 2016 Jul; 594(13):3629-50. PubMed ID: 27061101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The anterior paraventricular thalamus modulates neuronal excitability in the suprachiasmatic nuclei of the rat.
    Alamilla J; Granados-Fuentes D; Aguilar-Roblero R
    Eur J Neurosci; 2015 Nov; 42(10):2833-42. PubMed ID: 26417679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Luminance coding in a circadian pacemaker: the suprachiasmatic nucleus of the rat and the hamster.
    Meijer JH; Groos GA; Rusak B
    Brain Res; 1986 Sep; 382(1):109-18. PubMed ID: 3768668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of the retinal ON channels to scotopic and photopic spectral sensitivity.
    Smith EL; Harwerth RS; Crawford ML; Duncan GC
    Vis Neurosci; 1989 Sep; 3(3):225-39. PubMed ID: 2487104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential firing pattern and response to lighting conditions of rat intergeniculate leaflet neurons projecting to suprachiasmatic nucleus or contralateral intergeniculate leaflet.
    Blasiak T; Lewandowski MH
    Neuroscience; 2013 Jan; 228():315-24. PubMed ID: 23103793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photic responses of suprachiasmatic area neurons in diurnal degus (Octodon degus) and nocturnal rats (Rattus norvegicus).
    Jiao YY; Lee TM; Rusak B
    Brain Res; 1999 Jan; 817(1-2):93-103. PubMed ID: 9889333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The status of cones in the rhodopsin mutant P23H-3 retina: light-regulated damage and repair in parallel with rods.
    Chrysostomou V; Stone J; Stowe S; Barnett NL; Valter K
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1116-25. PubMed ID: 18326739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian rhythms and different photoresponses of Clock gene transcription in the rat suprachiasmatic nucleus and pineal gland.
    Wang GQ; Fu CL; Li JX; Du YZ; Tong J
    Sheng Li Xue Bao; 2006 Aug; 58(4):359-64. PubMed ID: 16906337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of circadian photoentrainment and abnormal retinal electrophysiology in Math5 mutant mice.
    Brzezinski JA; Brown NL; Tanikawa A; Bush RA; Sieving PA; Vitaterna MH; Takahashi JS; Glaser T
    Invest Ophthalmol Vis Sci; 2005 Jul; 46(7):2540-51. PubMed ID: 15980246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple hypothalamic cell populations encoding distinct visual information.
    Brown TM; Wynne J; Piggins HD; Lucas RJ
    J Physiol; 2011 Mar; 589(Pt 5):1173-94. PubMed ID: 21224225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the spontaneous activity in suprachiasmatic nucleus neurons: role of cation single channels.
    Kononenko NI; Berezetskaya NM
    J Theor Biol; 2010 Jul; 265(2):115-25. PubMed ID: 20362589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light responses in the mouse retina are prolonged upon targeted deletion of the HCN1 channel gene.
    Knop GC; Seeliger MW; Thiel F; Mataruga A; Kaupp UB; Friedburg C; Tanimoto N; Müller F
    Eur J Neurosci; 2008 Dec; 28(11):2221-30. PubMed ID: 19019198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-doubling illusion under scotopic illumination and in peripheral vision.
    Vallam K; Pataridis I; Metha AB
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3413-8. PubMed ID: 17591916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proportion of light-responsive neurons determines the limit cycle properties of the suprachiasmatic nucleus.
    Gu C; Ramkisoensing A; Liu Z; Meijer JH; Rohling JH
    J Biol Rhythms; 2014 Feb; 29(1):16-27. PubMed ID: 24492879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of frequency characteristics of photopic and scotopic S-potentials in the carp.
    Toyoda J; Kondo H
    Jpn J Physiol; 1976; 26(6):591-601. PubMed ID: 1030747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neuroanatomical and physiological study of the non-image forming visual system of the cone-rod homeobox gene (Crx) knock out mouse.
    Rovsing L; Rath MF; Lund-Andersen C; Klein DC; Møller M
    Brain Res; 2010 Jul; 1343():54-65. PubMed ID: 20438719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.