BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 10674754)

  • 1. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury.
    Metz GA; Curt A; van de Meent H; Klusman I; Schwab ME; Dietz V
    J Neurotrauma; 2000 Jan; 17(1):1-17. PubMed ID: 10674754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hypothermia effects on neuronal plasticity post spinal cord injury.
    Al-Nashash H; Wong KL; All AH
    PLoS One; 2024; 19(4):e0301430. PubMed ID: 38578715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filter-probe diffusion imaging improves spinal cord injury outcome prediction.
    Skinner NP; Lee SY; Kurpad SN; Schmit BD; Muftuler LT; Budde MD
    Ann Neurol; 2018 Jul; 84(1):37-50. PubMed ID: 29752739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A quantitative skin impedance test to diagnose spinal cord injury.
    Karamehmetoglu SS; Ugur M; Arslan YZ; Palamar D
    Eur Spine J; 2009 Jul; 18(7):972-7. PubMed ID: 19301045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord injury models: a review.
    Cheriyan T; Ryan DJ; Weinreb JH; Cheriyan J; Paul JC; Lafage V; Kirsch T; Errico TJ
    Spinal Cord; 2014 Aug; 52(8):588-95. PubMed ID: 24912546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection.
    Basso DM; Beattie MS; Bresnahan JC
    Exp Neurol; 1996 Jun; 139(2):244-56. PubMed ID: 8654527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animal models in spinal cord injury: a review.
    Akhtar AZ; Pippin JJ; Sandusky CB
    Rev Neurosci; 2008; 19(1):47-60. PubMed ID: 18561820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sensitive and reliable locomotor rating scale for open field testing in rats.
    Basso DM; Beattie MS; Bresnahan JC
    J Neurotrauma; 1995 Feb; 12(1):1-21. PubMed ID: 7783230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat models of spinal cord injury: from pathology to potential therapies.
    Kjell J; Olson L
    Dis Model Mech; 2016 Oct; 9(10):1125-1137. PubMed ID: 27736748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A monitored contusion model of spinal cord injury in the rat.
    Gruner JA
    J Neurotrauma; 1992; 9(2):123-6; discussion 126-8. PubMed ID: 1404425
    [No Abstract]   [Full Text] [Related]  

  • 11. Traumatic Spinal Cord Injury-Repair and Regeneration.
    Ahuja CS; Nori S; Tetreault L; Wilson J; Kwon B; Harrop J; Choi D; Fehlings MG
    Neurosurgery; 2017 Mar; 80(3S):S9-S22. PubMed ID: 28350947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Traumatic spinal cord injury produced by controlled contusion in mouse.
    Jakeman LB; Guan Z; Wei P; Ponnappan R; Dzwonczyk R; Popovich PG; Stokes BT
    J Neurotrauma; 2000 Apr; 17(4):299-319. PubMed ID: 10776914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade.
    Oyinbo CA
    Acta Neurobiol Exp (Wars); 2011; 71(2):281-99. PubMed ID: 21731081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling spinal cord contusion, dislocation, and distraction: characterization of vertebral clamps, injury severities, and node of Ranvier deformations.
    Choo AM; Liu J; Liu Z; Dvorak M; Tetzlaff W; Oxland TR
    J Neurosci Methods; 2009 Jun; 181(1):6-17. PubMed ID: 19383514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration.
    Galli R; Uckermann O
    Biophys Rev; 2024 Apr; 16(2):219-235. PubMed ID: 38737209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stepwise combined cell transplantation using mesenchymal stem cells and induced pluripotent stem cell-derived motor neuron progenitor cells in spinal cord injury.
    Kim JW; Kim J; Mo H; Han H; Rim YA; Ju JH
    Stem Cell Res Ther; 2024 Apr; 15(1):114. PubMed ID: 38650015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sovateltide (ILR-1620) Improves Motor Function and Reduces Hyperalgesia in a Rat Model of Spinal Cord Injury.
    Mavridis T; Mavridi A; Karampela E; Galanos A; Gkiokas G; Iacovidou N; Xanthos T
    Neurocrit Care; 2024 Mar; ():. PubMed ID: 38443708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of growth factor gene-modified stem cells for motor function after spinal cord injury in rodents: a systematic review and meta‑analysis.
    Shang WY; Ren YF; Li B; Huang XM; Zhang ZL; Huang J
    Neurosurg Rev; 2024 Feb; 47(1):87. PubMed ID: 38369598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing the Impact of Compression Duration and Deformation-Related Loss of Closure Force on Clip-Induced Spinal Cord Injury in Rats.
    Lee PH; Hsu HJ; Tien CH; Huang CC; Huang CY; Chen HF; Yeh ML; Lee JS
    Neurol Int; 2023 Nov; 15(4):1383-1392. PubMed ID: 37987461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic antioxidant nanoparticles mitigate secondary injury progression and promote functional recovery in spinal cord injury model.
    Jaffer H; Andrabi SS; Petro M; Kuang Y; Steinmetz MP; Labhasetwar V
    J Control Release; 2023 Dec; 364():109-123. PubMed ID: 37866402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.