BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10675294)

  • 1. Structural organization of posterior midgut muscles in mosquitoes, Aedes aegypti and Anopheles gambiae.
    Park SS; Shahabuddin M
    J Struct Biol; 2000 Feb; 129(1):30-7. PubMed ID: 10675294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ovicidal and larvicidal activity against Aedes aegypti and Anopheles gambiae complex mosquitoes of essential oils extracted from three spontaneous plants of Burkina Faso.
    Bassolé IH; Guelbeogo WM; Nébié R; Costantini C; Sagnon N; Kabore ZI; Traoré SA
    Parassitologia; 2003 Mar; 45(1):23-6. PubMed ID: 15270540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genomic and evolutionary analyses of Tango transposons in Aedes aegypti, Anopheles gambiae and other mosquito species.
    Coy MR; Tu Z
    Insect Mol Biol; 2007 Aug; 16(4):411-21. PubMed ID: 17506852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organization, ultrastructure, and development of midgut visceral muscle in larval Aedes aegypti.
    Bernick EP; Moffett SB; Moffett DF
    Tissue Cell; 2007 Aug; 39(4):277-92. PubMed ID: 17675126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determinants of vector specificity of o'nyong nyong and chikungunya viruses in Anopheles and Aedes mosquitoes.
    Vanlandingham DL; Tsetsarkin K; Klingler KA; Hong C; McElroy KL; Lehane MJ; Higgs S
    Am J Trop Med Hyg; 2006 Apr; 74(4):663-9. PubMed ID: 16607002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential infectivities of o'nyong-nyong and chikungunya virus isolates in Anopheles gambiae and Aedes aegypti mosquitoes.
    Vanlandingham DL; Hong C; Klingler K; Tsetsarkin K; McElroy KL; Powers AM; Lehane MJ; Higgs S
    Am J Trop Med Hyg; 2005 May; 72(5):616-21. PubMed ID: 15891138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory bioassay to compare susceptibilities of Aedes aegypti and Anopheles albimanus to Bacillus thuringiensis var. israelensis as affected by their feeding rates.
    Mahmood F
    J Am Mosq Control Assoc; 1998 Mar; 14(1):69-71. PubMed ID: 9599326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein synthesized by dengue infected Aedes aegypti and Aedes albopictus.
    Rohani A; Yunus W; Zamree I; Lee HL
    Trop Biomed; 2005 Dec; 22(2):233-42. PubMed ID: 16883293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Switchover to the mated state by spermathecal activation in female Anopheles gambiae mosquitoes.
    Klowden MJ
    J Insect Physiol; 2006 Jul; 52(7):679-84. PubMed ID: 16647081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epidemiology of tree-hole breeding mosquitoes in the tropical rainforest of Imo State, south-east Nigeria.
    Anosike JC; Nwoke BE; Okere AN; Oku EE; Asor JE; Emmy-Egbe IO; Adimike DA
    Ann Agric Environ Med; 2007; 14(1):31-8. PubMed ID: 17655174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased survivorship following bacterial infection by the mosquito Aedes aegypti as compared to Anopheles gambiae correlates with increased transcriptional induction of antimicrobial peptides.
    Coggins SA; Estévez-Lao TY; Hillyer JF
    Dev Comp Immunol; 2012 Jul; 37(3-4):390-401. PubMed ID: 22326457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanos (nos) genes of the vector mosquitoes, Anopheles gambiae, Anopheles stephensi and Aedes aegypti.
    Calvo E; Walter M; Adelman ZN; Jimenez A; Onal S; Marinotti O; James AA
    Insect Biochem Mol Biol; 2005 Jul; 35(7):789-98. PubMed ID: 15894194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.
    Arredondo-Jiménez JI; Valdez-Delgado KM
    Med Vet Entomol; 2006 Dec; 20(4):377-87. PubMed ID: 17199749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of two globin genes from the malaria mosquito Anopheles gambiae: divergent origin of nematoceran haemoglobins.
    Burmester T; Klawitter S; Hankeln T
    Insect Mol Biol; 2007 Apr; 16(2):133-42. PubMed ID: 17298561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins.
    Venancio TM; Cristofoletti PT; Ferreira C; Verjovski-Almeida S; Terra WR
    Insect Mol Biol; 2009 Feb; 18(1):33-44. PubMed ID: 19054160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transcriptomic atlas of
    Hixson B; Bing XL; Yang X; Bonfini A; Nagy P; Buchon N
    Elife; 2022 Apr; 11():. PubMed ID: 35471187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A GPI-linked carbonic anhydrase expressed in the larval mosquito midgut.
    Seron TJ; Hill J; Linser PJ
    J Exp Biol; 2004 Dec; 207(Pt 26):4559-72. PubMed ID: 15579552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Aedes aegypti glutathione transferase family.
    Lumjuan N; Stevenson BJ; Prapanthadara LA; Somboon P; Brophy PM; Loftus BJ; Severson DW; Ranson H
    Insect Biochem Mol Biol; 2007 Oct; 37(10):1026-35. PubMed ID: 17785190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative larvicidal toxicities of three ecdysone agonists on the mosquitoes Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae.
    Beckage NE; Marion KM; Walton WE; Wirth MC; Tan FF
    Arch Insect Biochem Physiol; 2004 Nov; 57(3):111-22. PubMed ID: 15484259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.