These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10675646)

  • 1. Middle ear influence on otoacoustic emissions. I: noninvasive investigation of the human transmission apparatus and comparison with model results.
    Avan P; Büki B; Maat B; Dordain M; Wit HP
    Hear Res; 2000 Feb; 140(1-2):189-201. PubMed ID: 10675646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Middle-ear influence on otoacoustic emissions. II: contributions of posture and intracranial pressure.
    Büki B; Chomicki A; Dordain M; Lemaire JJ; Wit HP; Chazal J; Avan P
    Hear Res; 2000 Feb; 140(1-2):202-11. PubMed ID: 10675647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise.
    Büki B; Wit HP; Avan P
    Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensating for deviant middle ear pressure in otoacoustic emission measurements, data, and comparison to a middle ear model.
    Hof JR; de Kleine E; Avan P; Anteunis LJ; Koopmans PJ; van Dijk P
    Otol Neurotol; 2012 Jun; 33(4):504-11. PubMed ID: 22569147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normative Wideband Reflectance, Equivalent Admittance at the Tympanic Membrane, and Acoustic Stapedius Reflex Threshold in Adults.
    Feeney MP; Keefe DH; Hunter LL; Fitzpatrick DF; Garinis AC; Putterman DB; McMillan GP
    Ear Hear; 2017; 38(3):e142-e160. PubMed ID: 28045835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between evoked otoacoustic emissions and middle-ear dynamic characteristics.
    Wada H; Ohyama K; Kobayashi T; Sunaga N; Koike T
    Audiology; 1993; 32(5):282-92. PubMed ID: 8216027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concomitant changes in the acoustic impedance and the cochlear microphonic potentials during twitch contractions of the middle ear muscles in cats.
    Freeman S; Zaaroura S; Sohmer H
    Arch Otorhinolaryngol; 1988; 245(5):311-5. PubMed ID: 3245804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic responses of the human middle ear.
    Voss SE; Rosowski JJ; Merchant SN; Peake WT
    Hear Res; 2000 Dec; 150(1-2):43-69. PubMed ID: 11077192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forward and Reverse Middle Ear Transmission in Gerbil with a Normal or Spontaneously Healed Tympanic Membrane.
    Lin X; Meenderink SWF; Stomackin G; Jung TT; Martin GK; Dong W
    J Assoc Res Otolaryngol; 2021 Jun; 22(3):261-274. PubMed ID: 33591494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Middle ear forward and reverse transmission in gerbil.
    Dong W; Olson ES
    J Neurophysiol; 2006 May; 95(5):2951-61. PubMed ID: 16481455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurements and model of the cat middle ear: evidence of tympanic membrane acoustic delay.
    Puria S; Allen JB
    J Acoust Soc Am; 1998 Dec; 104(6):3463-81. PubMed ID: 9857506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network model for the human middle ear.
    Kringlebotn M
    Scand Audiol; 1988; 17(2):75-85. PubMed ID: 3187377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmission matrix analysis of the chinchilla middle ear.
    Songer JE; Rosowski JJ
    J Acoust Soc Am; 2007 Aug; 122(2):932-42. PubMed ID: 17672642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forward and reverse transfer functions of the middle ear based on pressure and velocity DPOAEs with implications for differential hearing diagnosis.
    Dalhoff E; Turcanu D; Gummer AW
    Hear Res; 2011 Oct; 280(1-2):86-99. PubMed ID: 21624450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous measurement of middle-ear input impedance and forward/reverse transmission in cat.
    Voss SE; Shera CA
    J Acoust Soc Am; 2004 Oct; 116(4 Pt 1):2187-98. PubMed ID: 15532651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooling induces a decrease in middle ear compliance.
    Geal-Dor M; Khvoles R; Sohmer H
    J Basic Clin Physiol Pharmacol; 1997; 8(3):127-32. PubMed ID: 9429981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element modelling of sound transmission from outer to inner ear.
    Areias B; Santos C; Natal Jorge RM; Gentil F; Parente MP
    Proc Inst Mech Eng H; 2016 Nov; 230(11):999-1007. PubMed ID: 27591576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hearing function in a hyperbaric environment.
    Mendel LL; Knafelc ME; Cudahy EA
    Undersea Hyperb Med; 2000; 27(2):91-105. PubMed ID: 11011799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustics of the human middle-ear air space.
    Stepp CE; Voss SE
    J Acoust Soc Am; 2005 Aug; 118(2):861-71. PubMed ID: 16158643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.