These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10675647)

  • 1. Middle-ear influence on otoacoustic emissions. II: contributions of posture and intracranial pressure.
    Büki B; Chomicki A; Dordain M; Lemaire JJ; Wit HP; Chazal J; Avan P
    Hear Res; 2000 Feb; 140(1-2):202-11. PubMed ID: 10675647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Otoacoustic emissions: a new tool for monitoring intracranial pressure changes through stapes displacements.
    Büki B; Avan P; Lemaire JJ; Dordain M; Chazal J; Ribári O
    Hear Res; 1996 May; 94(1-2):125-39. PubMed ID: 8789818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Middle ear influence on otoacoustic emissions. I: noninvasive investigation of the human transmission apparatus and comparison with model results.
    Avan P; Büki B; Maat B; Dordain M; Wit HP
    Hear Res; 2000 Feb; 140(1-2):189-201. PubMed ID: 10675646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Posture-induced changes in distortion-product otoacoustic emissions and the potential for noninvasive monitoring of changes in intracranial pressure.
    Voss SE; Horton NJ; Tabucchi TH; Folowosele FO; Shera CA
    Neurocrit Care; 2006; 4(3):251-7. PubMed ID: 16757834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive measurements of intralabyrinthine pressure changes by electrocochleography and otoacoustic emissions.
    Büki B; Giraudet F; Avan P
    Hear Res; 2009 May; 251(1-2):51-9. PubMed ID: 19233252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of intracochlear and intracranial pressure changes with otoacoustic emissions: a gerbil model.
    Büki B; de Kleine E; Wit HP; Avan P
    Hear Res; 2002 May; 167(1-2):180-91. PubMed ID: 12117541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Posture systematically alters ear-canal reflectance and DPOAE properties.
    Voss SE; Adegoke MF; Horton NJ; Sheth KN; Rosand J; Shera CA
    Hear Res; 2010 May; 263(1-2):43-51. PubMed ID: 20227475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise.
    Büki B; Wit HP; Avan P
    Brain Res; 2000 Jan; 852(1):140-50. PubMed ID: 10661505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of ear-canal pressure and contralateral acoustic stimulation on evoked otoacoustic emissions in humans.
    Veuillet E; Collet L; Morgon A
    Hear Res; 1992 Aug; 61(1-2):47-55. PubMed ID: 1526893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between evoked otoacoustic emissions and middle-ear dynamic characteristics.
    Wada H; Ohyama K; Kobayashi T; Sunaga N; Koike T
    Audiology; 1993; 32(5):282-92. PubMed ID: 8216027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wideband tympanometry patterns in relation to intracranial pressure.
    Torrecilla SG; Avan P
    Hear Res; 2021 Sep; 408():108312. PubMed ID: 34298416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of contralateral acoustic stimulation on active cochlear micromechanical properties in human subjects: dependence on stimulus variables.
    Veuillet E; Collet L; Duclaux R
    J Neurophysiol; 1991 Mar; 65(3):724-35. PubMed ID: 2051201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noninvasive in-ear monitoring of intracranial pressure during microgravity in parabolic flights.
    Avan P; Normand H; Giraudet F; Gerenton G; Denise P
    J Appl Physiol (1985); 2018 Aug; 125(2):353-361. PubMed ID: 29722618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evoked otoacoustic emissions in children in relation to middle ear impedance.
    Pröschel U; Eysholdt U
    Folia Phoniatr (Basel); 1993; 45(6):288-94. PubMed ID: 8253453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth of evoked otoacoustic emissions during the first days postpartum. A preliminary report.
    Kok MR; van Zanten GA; Brocaar MP
    Audiology; 1992; 31(3):140-9. PubMed ID: 1642565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological monitoring of cochlear function as a non-invasive method to assess intracranial pressure variations.
    Sakka L; Thalamy A; Giraudet F; Hassoun T; Avan P; Chazal J
    Acta Neurochir Suppl; 2012; 114():131-4. PubMed ID: 22327678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of spontaneous otoacoustic emissions to the click evoked otoacoustic emissions.
    Kulawiec JT; Orlando MS
    Ear Hear; 1995 Oct; 16(5):515-20. PubMed ID: 8654906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of glycerol intake and body tilt on otoacoustic emissions reflect labyrinthine pressure changes in Menière's disease.
    Mom T; Gilain L; Avan P
    Hear Res; 2009 Apr; 250(1-2):38-45. PubMed ID: 19450433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of inner ear hearing loss on delayed otoacoustic emissions (TEOAE) and distortion products (DPOAE)].
    Hoth S
    Laryngorhinootologie; 1996 Dec; 75(12):709-18. PubMed ID: 9081275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.