These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 10675662)

  • 1. Ultrasonic quantification of osseous displacements resulting from skin surface indentation loading of bovine para-spinal tissue.
    Kawchuk GN; Fauvel OR; Dmowski J
    Clin Biomech (Bristol, Avon); 2000 May; 15(4):228-33. PubMed ID: 10675662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic indentation: a procedure for the noninvasive quantification of force-displacement properties of the lumbar spine.
    Kawchuk GN; Fauvel OR; Dmowski J
    J Manipulative Physiol Ther; 2001; 24(3):149-56. PubMed ID: 11313610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of displacement measurements obtained from ultrasonic images during indentation testing.
    Kawchuk GN; Elliott PD
    Ultrasound Med Biol; 1998 Jan; 24(1):105-11. PubMed ID: 9483777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The accuracy of ultrasonic indentation in detecting simulated bone displacement: a comparison of three techniques.
    Kawchuk GN; Liddle TR; Fauvel OR; Johnston C
    J Manipulative Physiol Ther; 2006 Feb; 29(2):126-33. PubMed ID: 16461171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The diagnostic performance of vertebral displacement measurements derived from ultrasonic indentation in an in vivo model of degenerative disc disease.
    Kawchuk GN; Kaigle AM; Holm SH; Rod Fauvel O; Ekström L; Hansson T
    Spine (Phila Pa 1976); 2001 Jun; 26(12):1348-55. PubMed ID: 11426151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating localized oscillatory tissue motion for assessment of the underlying mechanical modulus.
    Konofagou EE; Ottensmeyer M; Agabian S; Dawson SL; Hynynen K
    Ultrasonics; 2004 Apr; 42(1-9):951-6. PubMed ID: 15047412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential displacement of soft tissue layers from manual therapy loading.
    Engell S; Triano JJ; Fox JR; Langevin HM; Konofagou EE
    Clin Biomech (Bristol, Avon); 2016 Mar; 33():66-72. PubMed ID: 26954891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal spine tester for in vitro experiments with muscle force simulation.
    Wilke HJ; Claes L; Schmitt H; Wolf S
    Eur Spine J; 1994; 3(2):91-7. PubMed ID: 7874556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound speed varies in articular cartilage under indentation loading.
    Lötjönen P; Julkunen P; Tiitu V; Jurvelin JS; Töyräs J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Dec; 58(12):2772-80. PubMed ID: 23443716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic characterization of cancellous bone using apparent integrated backscatter.
    Hoffmeister BK; Jones CI; Caldwell GJ; Kaste SC
    Phys Med Biol; 2006 Jun; 51(11):2715-27. PubMed ID: 16723761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harmonic motion imaging for focused ultrasound (HMIFU): a fully integrated technique for sonication and monitoring of thermal ablation in tissues.
    Maleke C; Konofagou EE
    Phys Med Biol; 2008 Mar; 53(6):1773-93. PubMed ID: 18367802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The in vivo dynamic response of the spine to perturbations causing rapid flexion: effects of pre-load and step input magnitude.
    Krajcarski SR; Potvin JR; Chiang J
    Clin Biomech (Bristol, Avon); 1999 Jan; 14(1):54-62. PubMed ID: 10619090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro biaxial stress-strain response of human skin.
    Schneider DC; Davidson TM; Nahum AM
    Arch Otolaryngol; 1984 May; 110(5):329-33. PubMed ID: 6712522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A model of spine, ribcage and pelvic responses to a specific lumbar manipulative force in relaxed subjects.
    Lee M; Kelly DW; Steven GP
    J Biomech; 1995 Nov; 28(11):1403-8. PubMed ID: 8522552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An In Vitro Evaluation of Fracture Reduction Achieved by Inflatable Bone Tamps Under Simulated Physiological Load.
    Gordon M; Peppelman WC; Beutler W; OʼHalloran D; Chinthakunta SR; Bucklen B
    Clin Spine Surg; 2017 Feb; 30(1):E31-E37. PubMed ID: 28107240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element simulation of Reference Point Indentation on bone.
    Idkaidek A; Agarwal V; Jasiuk I
    J Mech Behav Biomed Mater; 2017 Jan; 65():574-583. PubMed ID: 27721174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mechanical indentation on diffuse reflectance spectra, light transmission, and intrinsic optical properties in ex vivo porcine skin.
    Vogt WC; Izquierdo-Román A; Nichols B; Lim L; Tunnell JW; Rylander CG
    Lasers Surg Med; 2012 Apr; 44(4):303-9. PubMed ID: 22419501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite difference model of load-induced fluid displacements within bone under mechanical loading.
    Steck R; Niederer P; Knothe Tate ML
    Med Eng Phys; 2000 Mar; 22(2):117-25. PubMed ID: 10854965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabric-based Tsai-Wu yield criteria for vertebral trabecular bone in stress and strain space.
    Wolfram U; Gross T; Pahr DH; Schwiedrzik J; Wilke HJ; Zysset PK
    J Mech Behav Biomed Mater; 2012 Nov; 15():218-28. PubMed ID: 23159819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of intervertebral displacement with a novel MRI-based modeling technique: Assessing measurement bias and reliability with a porcine spine model.
    Mahato NK; Montuelle S; Goubeaux C; Cotton J; Williams S; Thomas J; Clark BC
    Magn Reson Imaging; 2017 May; 38():77-86. PubMed ID: 28027908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.