BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 10676629)

  • 1. Photofrin photodynamic therapy can significantly deplete or preserve oxygenation in human basal cell carcinomas during treatment, depending on fluence rate.
    Henderson BW; Busch TM; Vaughan LA; Frawley NP; Babich D; Sosa TA; Zollo JD; Dee AS; Cooper MT; Bellnier DA; Greco WR; Oseroff AR
    Cancer Res; 2000 Feb; 60(3):525-9. PubMed ID: 10676629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photodynamic therapy creates fluence rate-dependent gradients in the intratumoral spatial distribution of oxygen.
    Busch TM; Wileyto EP; Emanuele MJ; Del Piero F; Marconato L; Glatstein E; Koch CJ
    Cancer Res; 2002 Dec; 62(24):7273-9. PubMed ID: 12499269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of fluence rate on tumor and normal tissue responses to photodynamic therapy.
    Sitnik TM; Henderson BW
    Photochem Photobiol; 1998 Apr; 67(4):462-6. PubMed ID: 9559590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photofrin-mediated photodynamic therapy induces vascular occlusion and apoptosis in a human sarcoma xenograft model.
    Engbrecht BW; Menon C; Kachur AV; Hahn SM; Fraker DL
    Cancer Res; 1999 Sep; 59(17):4334-42. PubMed ID: 10485481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photofrin-mediated photodynamic therapy for treatment of aggressive head and neck nonmelanomatous skin tumors in elderly patients.
    Gayl Schweitzer V
    Laryngoscope; 2001 Jun; 111(6):1091-8. PubMed ID: 11404627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictions of mathematical models of tissue oxygenation and generation of singlet oxygen during photodynamic therapy.
    Yuan J; Mahama-Relue PA; Fournier RL; Hampton JA
    Radiat Res; 1997 Oct; 148(4):386-94. PubMed ID: 9339955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluence rate as a modulator of PDT mechanisms.
    Henderson BW; Busch TM; Snyder JW
    Lasers Surg Med; 2006 Jun; 38(5):489-93. PubMed ID: 16615136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photodynamic therapy for the treatment of basal cell carcinoma.
    Wilson BD; Mang TS; Stoll H; Jones C; Cooper M; Dougherty TJ
    Arch Dermatol; 1992 Dec; 128(12):1597-601. PubMed ID: 1456752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro.
    Dysart JS; Patterson MS
    Phys Med Biol; 2005 Jun; 50(11):2597-616. PubMed ID: 15901957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodynamic therapy of actinic keratosis at varying fluence rates: assessment of photobleaching, pain and primary clinical outcome.
    Ericson MB; Sandberg C; Stenquist B; Gudmundson F; Karlsson M; Ros AM; Rosén A; Larkö O; Wennberg AM; Rosdahl I
    Br J Dermatol; 2004 Dec; 151(6):1204-12. PubMed ID: 15606516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of photosensitizer dose on fluence rate responses to photodynamic therapy.
    Wang HW; Rickter E; Yuan M; Wileyto EP; Glatstein E; Yodh A; Busch TM
    Photochem Photobiol; 2007; 83(5):1040-8. PubMed ID: 17880498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Photodynamic therapy for gastric cancer].
    Mimura S; Narahara H; Uehara H; Otani T; Okuda S
    Gan To Kagaku Ryoho; 1996 Jan; 23(1):41-6. PubMed ID: 8546468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. delta-Aminolevulinic acid and blue light photodynamic therapy for treatment of multiple basal cell carcinomas in two patients with nevoid basal cell carcinoma syndrome.
    Itkin A; Gilchrest BA
    Dermatol Surg; 2004 Jul; 30(7):1054-61. PubMed ID: 15209801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative clinical trial of photodynamic therapy with photofrin II and excimer dye laser for early gastric cancer.
    Mimura S; Ito Y; Nagayo T; Ichii M; Kato H; Sakai H; Goto K; Noguchi Y; Tanimura H; Nagai Y; Suzuki S; Hiki Y; Hayata Y
    Lasers Surg Med; 1996; 19(2):168-72. PubMed ID: 8887919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of laser photodynamic therapy on tumor phosphate levels and pH assessed by 31P-NMR spectroscopy.
    Gibson SL; Ceckler TL; Bryant TG; Hilf R
    Cancer Biochem Biophys; 1989 Oct; 10(4):319-28. PubMed ID: 2533522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment-induced changes in tumor oxygenation predict photodynamic therapy outcome.
    Wang HW; Putt ME; Emanuele MJ; Shin DB; Glatstein E; Yodh AG; Busch TM
    Cancer Res; 2004 Oct; 64(20):7553-61. PubMed ID: 15492282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choice of optimal wavelength for PDT: the significance of oxygen depletion.
    Nielsen KP; Juzeniene A; Juzenas P; Stamnes K; Stamnes JJ; Moan J
    Photochem Photobiol; 2005; 81(5):1190-4. PubMed ID: 15934793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequencing of combined hyperthermia and photodynamic therapy.
    Chen Q; Chen H; Shapiro H; Hetzel FW
    Radiat Res; 1996 Sep; 146(3):293-7. PubMed ID: 8752307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of various photoradiation regimens on the antitumor efficacy of photodynamic therapy for R3230AC mammary carcinomas.
    Gibson SL; VanDerMeid KR; Murant RS; Raubertas RF; Hilf R
    Cancer Res; 1990 Nov; 50(22):7236-41. PubMed ID: 2171760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anti-tumor effect of PDT using Photofrin in a mouse angiosarcoma model.
    Jin I; Yuji M; Yoshinori N; Makoto K; Mikio M
    Arch Dermatol Res; 2008 Apr; 300(4):161-6. PubMed ID: 18080130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.