These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

350 related articles for article (PubMed ID: 10677034)

  • 21. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis.
    Cowley MA; Smith RG; Diano S; Tschöp M; Pronchuk N; Grove KL; Strasburger CJ; Bidlingmaier M; Esterman M; Heiman ML; Garcia-Segura LM; Nillni EA; Mendez P; Low MJ; Sotonyi P; Friedman JM; Liu H; Pinto S; Colmers WF; Cone RD; Horvath TL
    Neuron; 2003 Feb; 37(4):649-61. PubMed ID: 12597862
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Age-dependent hypothalamic expression of neuropeptides in wild-type and melanocortin-4 receptor-deficient mice.
    Arens J; Moar KM; Eiden S; Weide K; Schmidt I; Mercer JG; Simon E; Korf HW
    Physiol Genomics; 2003 Dec; 16(1):38-46. PubMed ID: 14559977
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prenatal development of hypothalamic neuropeptide systems in the nonhuman primate.
    Grayson BE; Allen SE; Billes SK; Williams SM; Smith MS; Grove KL
    Neuroscience; 2006 Dec; 143(4):975-86. PubMed ID: 17029798
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Central administration of neuropeptide Y reduces alpha-melanocyte-stimulating hormone-induced cyclic adenosine 5'-monophosphate response element binding protein (CREB) phosphorylation in pro-thyrotropin-releasing hormone neurons and increases CREB phosphorylation in corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus.
    Sarkar S; Lechan RM
    Endocrinology; 2003 Jan; 144(1):281-91. PubMed ID: 12488356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The hypothalamic arcuate nucleus and the control of peripheral substrates.
    Joly-Amado A; Cansell C; Denis RG; Delbes AS; Castel J; Martinez S; Luquet S
    Best Pract Res Clin Endocrinol Metab; 2014 Oct; 28(5):725-37. PubMed ID: 25256767
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The NPY/AgRP neuron and energy homeostasis.
    Morton GJ; Schwartz MW
    Int J Obes Relat Metab Disord; 2001 Dec; 25 Suppl 5():S56-62. PubMed ID: 11840217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein.
    Chen HY; Trumbauer ME; Chen AS; Weingarth DT; Adams JR; Frazier EG; Shen Z; Marsh DJ; Feighner SD; Guan XM; Ye Z; Nargund RP; Smith RG; Van der Ploeg LH; Howard AD; MacNeil DJ; Qian S
    Endocrinology; 2004 Jun; 145(6):2607-12. PubMed ID: 14962995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Early weaning is associated with higher neuropeptide Y (NPY) and lower cocaine- and amphetamine-regulated transcript (CART) expressions in the paraventricular nucleus (PVN) in adulthood.
    Younes-Rapozo V; de Moura EG; da Silva Lima N; Barradas PC; Manhães AC; de Oliveira E; Lisboa PC
    Br J Nutr; 2012 Dec; 108(12):2286-95. PubMed ID: 22874082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of hypothalamic feeding and metabolic signals: focus on neuropeptide Y.
    Currie PJ
    Appetite; 2003 Dec; 41(3):335-7. PubMed ID: 14637334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential regulation of agouti-related protein and neuropeptide Y in hypothalamic neurons following a stressful event.
    Kas MJ; Bruijnzeel AW; Haanstra JR; Wiegant VM; Adan RA
    J Mol Endocrinol; 2005 Aug; 35(1):159-64. PubMed ID: 16087729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hypothalamic regulation of energy homeostasis.
    Sainsbury A; Cooney GJ; Herzog H
    Best Pract Res Clin Endocrinol Metab; 2002 Dec; 16(4):623-37. PubMed ID: 12468411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cocaine- and amphetamine-regulated transcript (CART) is colocalized with the orexigenic neuropeptide Y and agouti-related protein and absent from the anorexigenic alpha-melanocyte-stimulating hormone neurons in the infundibular nucleus of the human hypothalamus.
    Menyhért J; Wittmann G; Lechan RM; Keller E; Liposits Z; Fekete C
    Endocrinology; 2007 Sep; 148(9):4276-81. PubMed ID: 17525122
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chronic intracerebroventricular administration of anti-neuropeptide Y antibody stimulates starvation-induced feeding via compensatory responses in the hypothalamus.
    Ishii T; Muranaka R; Tashiro O; Nishimura M
    Brain Res; 2007 May; 1144():91-100. PubMed ID: 17320051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome.
    Fan W; Boston BA; Kesterson RA; Hruby VJ; Cone RD
    Nature; 1997 Jan; 385(6612):165-8. PubMed ID: 8990120
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct regulation of GnRH neuron excitability by arcuate nucleus POMC and NPY neuron neuropeptides in female mice.
    Roa J; Herbison AE
    Endocrinology; 2012 Nov; 153(11):5587-99. PubMed ID: 22948210
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered neuronal responses to feeding-relevant peptides as sign of developmental plasticity in the hypothalamic regulatory system of body weight.
    Davidowa H; Li Y; Plagemann A
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2003; 53(5):663-70. PubMed ID: 14658333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced anorexigenic signaling in lean obesity resistant syndecan-3 null mice.
    Zheng Q; Zhu J; Shanabrough M; Borok E; Benoit SC; Horvath TL; Clegg DJ; Reizes O
    Neuroscience; 2010 Dec; 171(4):1032-40. PubMed ID: 20923696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Central orchestration of peripheral nutrient partitioning and substrate utilization: implications for the metabolic syndrome.
    Denis RG; Joly-Amado A; Cansell C; Castel J; Martinez S; Delbes AS; Luquet S
    Diabetes Metab; 2014 Jun; 40(3):191-7. PubMed ID: 24332017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A neural basis for melanocortin-4 receptor-regulated appetite.
    Garfield AS; Li C; Madara JC; Shah BP; Webber E; Steger JS; Campbell JN; Gavrilova O; Lee CE; Olson DP; Elmquist JK; Tannous BA; Krashes MJ; Lowell BB
    Nat Neurosci; 2015 Jun; 18(6):863-71. PubMed ID: 25915476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 11 beta-hydroxysteroid dehydrogenase type 1 induction in the arcuate nucleus by high-fat feeding: A novel constraint to hyperphagia?
    Densmore VS; Morton NM; Mullins JJ; Seckl JR
    Endocrinology; 2006 Sep; 147(9):4486-95. PubMed ID: 16763061
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.