BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 10677289)

  • 1. Binding of equine infectious anemia virus matrix protein to membrane bilayers involves multiple interactions.
    Provitera P; Bouamr F; Murray D; Carter C; Scarlata S
    J Mol Biol; 2000 Feb; 296(3):887-98. PubMed ID: 10677289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-induced alterations in HIV-1 Gag and matrix protein-protein interactions.
    Scarlata S; Ehrlich LS; Carter CA
    J Mol Biol; 1998 Mar; 277(2):161-9. PubMed ID: 9514761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The major homology region of the HIV-1 gag precursor influences membrane affinity.
    Ebbets-Reed D; Scarlata S; Carter CA
    Biochemistry; 1996 Nov; 35(45):14268-75. PubMed ID: 8916912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Equine Infectious Anemia Virus Gag Assembly and Export Are Directed by Matrix Protein through trans-Golgi Networks and Cellular Vesicles.
    Zhang Z; Ma J; Zhang X; Su C; Yao QC; Wang X
    J Virol; 2016 Feb; 90(4):1824-38. PubMed ID: 26637458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural characterization and membrane binding properties of the matrix protein VP40 of Ebola virus.
    Ruigrok RW; Schoehn G; Dessen A; Forest E; Volchkov V; Dolnik O; Klenk HD; Weissenhorn W
    J Mol Biol; 2000 Jun; 300(1):103-12. PubMed ID: 10864502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of myristylation in HIV-1 Gag assembly.
    Bouamr F; Scarlata S; Carter C
    Biochemistry; 2003 Jun; 42(21):6408-17. PubMed ID: 12767222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retroviral matrix domains share electrostatic homology: models for membrane binding function throughout the viral life cycle.
    Murray PS; Li Z; Wang J; Tang CL; Honig B; Murray D
    Structure; 2005 Oct; 13(10):1521-31. PubMed ID: 16216583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of equine infectious anemia virus proteinase complexed with an inhibitor.
    Gustchina A; Kervinen J; Powell DJ; Zdanov A; Kay J; Wlodawer A
    Protein Sci; 1996 Aug; 5(8):1453-65. PubMed ID: 8844837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional relationship between the matrix proteins of feline and simian immunodeficiency viruses.
    Manrique ML; González SA; Affranchino JL
    Virology; 2004 Nov; 329(1):157-67. PubMed ID: 15476883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of myristoylation in the membrane association of the Lassa virus matrix protein Z.
    Strecker T; Maisa A; Daffis S; Eichler R; Lenz O; Garten W
    Virol J; 2006 Nov; 3():93. PubMed ID: 17083745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty acids can substitute the HIV fusion peptide in lipid merging and fusion: an analogy between viral and palmitoylated eukaryotic fusion proteins.
    Lev N; Shai Y
    J Mol Biol; 2007 Nov; 374(1):220-30. PubMed ID: 17919659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The N-terminal basic domain of the HIV-1 matrix protein does not contain a conventional nuclear localization sequence but is required for DNA binding and protein self-association.
    Hearps AC; Wagstaff KM; Piller SC; Jans DA
    Biochemistry; 2008 Feb; 47(7):2199-210. PubMed ID: 18225865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific and distinct determinants mediate membrane binding and lipid raft incorporation of HIV-1(SF2) Nef.
    Giese SI; Woerz I; Homann S; Tibroni N; Geyer M; Fackler OT
    Virology; 2006 Nov; 355(2):175-91. PubMed ID: 16916529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A leucine zipper motif in the ectodomain of Sendai virus fusion protein assembles in solution and in membranes and specifically binds biologically-active peptides and the virus.
    Ghosh JK; Ovadia M; Shai Y
    Biochemistry; 1997 Dec; 36(49):15451-62. PubMed ID: 9398274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure of the capsid protein from the human T-cell leukemia virus type-I.
    Khorasanizadeh S; Campos-Olivas R; Summers MF
    J Mol Biol; 1999 Aug; 291(2):491-505. PubMed ID: 10438634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for lentivirus capsid core assembly based on crystal dimers of EIAV p26.
    Jin Z; Jin L; Peterson DL; Lawson CL
    J Mol Biol; 1999 Feb; 286(1):83-93. PubMed ID: 9931251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular modelling study of HIV p17gag (MA) protein shell utilising data from electron microscopy and X-ray crystallography.
    Forster MJ; Mulloy B; Nermut MV
    J Mol Biol; 2000 May; 298(5):841-57. PubMed ID: 10801353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined amino acid mutations occurring in the envelope closely correlate with pathogenicity of EIAV.
    Liang H; He X; Shen RX; Shen T; Tong X; Ma Y; Xiang WH; Zhang XY; Shao YM
    Arch Virol; 2006 Jul; 151(7):1387-403. PubMed ID: 16502285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of viral assembly in murine cells by HIV-1 matrix.
    Hübner W; Chen BK
    Virology; 2006 Aug; 352(1):27-38. PubMed ID: 16750235
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.