BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10677358)

  • 1. Ca2+ buffering in the heart: Ca2+ binding to and activation of cardiac myofibrils.
    Smith GA; Dixon HB; Kirschenlohr HL; Grace AA; Metcalfe JC; Vandenberg JI
    Biochem J; 2000 Mar; 346 Pt 2(Pt 2):393-402. PubMed ID: 10677358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of systolic and diastolic free intracellular Ca2+ by titration of Ca2+ buffering in the ferret heart.
    Kirschenlohr HL; Grace AA; Vandenberg JI; Metcalfe JC; Smith GA
    Biochem J; 2000 Mar; 346 Pt 2(Pt 2):385-91. PubMed ID: 10677357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial nonuniformity of contraction causes arrhythmogenic Ca2+ waves in rat cardiac muscle.
    Ter Keurs HE; Wakayama Y; Miura M; Stuyvers BD; Boyden PA; Landesberg A
    Ann N Y Acad Sci; 2005 Jun; 1047():345-65. PubMed ID: 16093510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-dependent activation of cardiac myofibrils. The mechanisms that modulate myofibrillar ATPase and tension and their significance for heart function.
    Rupp H
    Adv Myocardiol; 1982; 3():455-66. PubMed ID: 6302787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sarcolemmal Ca2+ efflux reduces sarcoplasmic reticulum Ca2+ content and systolic Ca2+ in cardiac hypertrophy.
    Díaz ME; Graham HK; Trafford AW
    Cardiovasc Res; 2004 Jun; 62(3):538-47. PubMed ID: 15158146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiac-directed parvalbumin transgene expression in mice shows marked heart rate dependence of delayed Ca2+ buffering action.
    Day SM; Coutu P; Wang W; Herron T; Turner I; Shillingford M; Lacross NC; Converso KL; Piao L; Li J; Lopatin AN; Metzger JM
    Physiol Genomics; 2008 May; 33(3):312-22. PubMed ID: 18334547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sarcomere mechanics in uniform and nonuniform cardiac muscle: a link between pump function and arrhythmias.
    Ter Keurs HE; Shinozaki T; Zhang YM; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():79-95. PubMed ID: 18375580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic mechanism of the Ca2+-dependent switch-on and switch-off of cardiac troponin in myofibrils.
    Solzin J; Iorga B; Sierakowski E; Gomez Alcazar DP; Ruess DF; Kubacki T; Zittrich S; Blaudeck N; Pfitzer G; Stehle R
    Biophys J; 2007 Dec; 93(11):3917-31. PubMed ID: 17704185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling and measuring electromechanical coupling in the rat heart.
    Niederer SA; Ter Keurs HE; Smith NP
    Exp Physiol; 2009 May; 94(5):529-40. PubMed ID: 19218357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of the NMR shift-reagents Dy(PPP)2, Dy(TTHA) and Tm(DOTP) on developed pressure in isolated perfused rat hearts. The role of shift-reagent calcium complexes.
    Gaszner B; Simor T; Hild G; Elgavish GA
    J Mol Cell Cardiol; 2001 Nov; 33(11):1945-56. PubMed ID: 11708840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
    ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Involvement of Ca2+ buffering and Na+/Ca2+ exchange in the positive staircase of contraction in guinea-pig ventricular myocytes.
    Kuratomi S; Matsuoka S; Sarai N; Powell T; Noma A
    Pflugers Arch; 2003 Jun; 446(3):347-55. PubMed ID: 12684790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer simulation of excitation-contraction coupling in cardiac muscle. A study of the regulatory role of calcium binding to troponin C.
    Michailova A; Spassov V
    Gen Physiol Biophys; 1997 Mar; 16(1):29-38. PubMed ID: 9290941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational simulation of hypertrophic cardiomyopathy mutations in troponin I: influence of increased myofilament calcium sensitivity on isometric force, ATPase and [Ca2+]i.
    Kataoka A; Hemmer C; Chase PB
    J Biomech; 2007; 40(9):2044-52. PubMed ID: 17140583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force-frequency relationship in intact mammalian ventricular myocardium: physiological and pathophysiological relevance.
    Endoh M
    Eur J Pharmacol; 2004 Oct; 500(1-3):73-86. PubMed ID: 15464022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrhythmogenic Ca(2+) release from cardiac myofilaments.
    Ter Keurs HE; Wakayama Y; Miura M; Shinozaki T; Stuyvers BD; Boyden PA; Landesberg A
    Prog Biophys Mol Biol; 2006; 90(1-3):151-71. PubMed ID: 16120452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of the calcium dissociation constant of Rhod(2)in the perfused mouse heart using manganese quenching.
    Du C; MacGowan GA; Farkas DL; Koretsky AP
    Cell Calcium; 2001 Apr; 29(4):217-27. PubMed ID: 11243930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent FHC-related cardiac troponin T mutations exhibit specific alterations in myocellular contractility and calcium kinetics.
    Haim TE; Dowell C; Diamanti T; Scheuer J; Tardiff JC
    J Mol Cell Cardiol; 2007 Jun; 42(6):1098-110. PubMed ID: 17490679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Length dependence of cardiac myofilament Ca(2+) sensitivity in the presence of substitute nucleoside triphosphates.
    Smith SH; Fuchs F
    J Mol Cell Cardiol; 2002 May; 34(5):547-54. PubMed ID: 12056858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.