These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10677612)

  • 1. Selective responsiveness of medial prefrontal cortex neurons to the meaningful stimulus with a low probability of occurrence in rats.
    Jodo E; Suzuki Y; Kayama Y
    Brain Res; 2000 Feb; 856(1-2):68-74. PubMed ID: 10677612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. P3b-like potential of rats recorded in an active discrimination task.
    Jodo E; Takeuchi S; Kayama Y
    Electroencephalogr Clin Neurophysiol; 1995 Nov; 96(6):555-60. PubMed ID: 7489677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural correlates of task switching in prefrontal cortex and primary auditory cortex in a novel stimulus selection task for rodents.
    Rodgers CC; DeWeese MR
    Neuron; 2014 Jun; 82(5):1157-70. PubMed ID: 24908492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective delay activity in the medial prefrontal cortex of the rat: contribution of sensorimotor information and contingency.
    Cowen SL; McNaughton BL
    J Neurophysiol; 2007 Jul; 98(1):303-16. PubMed ID: 17507507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory spatial discriminatory and mnemonic neurons in rat posterior parietal cortex.
    Nakamura K
    J Neurophysiol; 1999 Nov; 82(5):2503-17. PubMed ID: 10561422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct ensembles of medial prefrontal cortex neurons are activated by threatening stimuli that elicit excitation vs. inhibition of movement.
    Halladay LR; Blair HT
    J Neurophysiol; 2015 Aug; 114(2):793-807. PubMed ID: 25972588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of neural responses in the primary auditory cortex, amygdala, and medial prefrontal cortex of cats during auditory discrimination tasks.
    Zhao Z; Ma L; Wang Y; Qin L
    J Neurophysiol; 2019 Mar; 121(3):785-798. PubMed ID: 30649979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unilateral electrical stimulation of rat locus coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of medial prefrontal cortex.
    Marzo A; Totah NK; Neves RM; Logothetis NK; Eschenko O
    J Neurophysiol; 2014 Jun; 111(12):2570-88. PubMed ID: 24671530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential representation of Pavlovian-instrumental transfer by prefrontal cortex subregions and striatum.
    Homayoun H; Moghaddam B
    Eur J Neurosci; 2009 Apr; 29(7):1461-76. PubMed ID: 19309320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Responses of rat medial prefrontal cortical neurons to Pavlovian conditioned stimuli and to delivery of appetitive reward.
    Petykó Z; Gálosi R; Tóth A; Máté K; Szabó I; Szabó I; Karádi Z; Lénárd L
    Behav Brain Res; 2015; 287():109-19. PubMed ID: 25819423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tone identification behavior in Rattus norvegicus: muscarinic receptor blockage lowers responsiveness in nontarget selective neurons, while nicotinic receptor blockage selectively lowers target responses.
    Carpenter-Hyland EP; Griffeth J; Bunting K; Terry A; Vazdarjanova A; Blake DT
    Eur J Neurosci; 2017 Jul; 46(2):1779-1789. PubMed ID: 28544049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contributions of the subregions of the medial prefrontal cortex to negative occasion setting.
    MacLeod JE; Bucci DJ
    Behav Neurosci; 2010 Jun; 124(3):321-8. PubMed ID: 20528075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning strategy refinement reverses early sensory cortical map expansion but not behavior: Support for a theory of directed cortical substrates of learning and memory.
    Elias GA; Bieszczad KM; Weinberger NM
    Neurobiol Learn Mem; 2015 Dec; 126():39-55. PubMed ID: 26596700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal representation of audio-place associations in the medial prefrontal cortex of rats.
    Wang Q; Yang ST; Li BM
    Mol Brain; 2015 Sep; 8(1):56. PubMed ID: 26391676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medullary sympathoexcitatory neurons are inhibited by activation of the medial prefrontal cortex in the rat.
    Verberne AJ
    Am J Physiol; 1996 Apr; 270(4 Pt 2):R713-9. PubMed ID: 8967398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal coding of auditory sensorimotor gating in medial prefrontal cortex.
    Tóth A; Petykó Z; Gálosi R; Szabó I; Karádi K; Feldmann Á; Péczely L; Kállai V; Karádi Z; Lénárd L
    Behav Brain Res; 2017 May; 326():200-208. PubMed ID: 28284946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of rat medial prefrontal cortex lesions on olfactory serial reversal and delayed alternation tasks.
    Kinoshita S; Yokoyama C; Masaki D; Yamashita T; Tsuchida H; Nakatomi Y; Fukui K
    Neurosci Res; 2008 Feb; 60(2):213-8. PubMed ID: 18077035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of azimuth tuning plasticity in rat primary auditory cortex by medial prefrontal cortex.
    Gao L; Li X; Yang W; Sun X
    Neuroscience; 2017 Apr; 347():36-47. PubMed ID: 28188851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory inhibitory gating in medial prefrontal cortex: Single unit and local field potential analysis.
    Mears RP; Klein AC; Cromwell HC
    Neuroscience; 2006 Aug; 141(1):47-65. PubMed ID: 16675142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal plasticity in the primary auditory cortex induced by operant perceptual learning.
    Bao S; Chang EF; Woods J; Merzenich MM
    Nat Neurosci; 2004 Sep; 7(9):974-81. PubMed ID: 15286790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.