BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 10677844)

  • 1. Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway.
    Liaud MF; Lichtlé C; Apt K; Martin W; Cerff R
    Mol Biol Evol; 2000 Feb; 17(2):213-23. PubMed ID: 10677844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broad distribution of TPI-GAPDH fusion proteins among eukaryotes: evidence for glycolytic reactions in the mitochondrion?
    Nakayama T; Ishida K; Archibald JM
    PLoS One; 2012; 7(12):e52340. PubMed ID: 23284996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A transcriptional fusion of genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase in dinoflagellates.
    Takishita K; Patron NJ; Ishida K; Maruyama T; Keeling PJ
    J Eukaryot Microbiol; 2005; 52(4):343-8. PubMed ID: 16014012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The tigA gene is a transcriptional fusion of glycolytic genes encoding triose-phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase in oomycota.
    Unkles SE; Logsdon JM; Robison K; Kinghorn JR; Duncan JM
    J Bacteriol; 1997 Nov; 179(21):6816-23. PubMed ID: 9352934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology, phylogeny, early evolution, and GAPDH.
    Martin WF; Cerff R
    Protoplasma; 2017 Sep; 254(5):1823-1834. PubMed ID: 28265765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycolytic enzyme operon of Borrelia burgdorferi: characterization and evolutionary implications.
    Gebbia JA; Backenson PB; Coleman JL; Anda P; Benach JL
    Gene; 1997 Apr; 188(2):221-8. PubMed ID: 9133595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase.
    Eikmanns BJ
    J Bacteriol; 1992 Oct; 174(19):6076-86. PubMed ID: 1400158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids.
    Harper JT; Keeling PJ
    Mol Biol Evol; 2003 Oct; 20(10):1730-5. PubMed ID: 12885964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plant plastids.
    Petersen J; Brinkmann H; Cerff R
    J Mol Evol; 2003 Jul; 57(1):16-26. PubMed ID: 12962302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for a chimeric nature of nuclear genomes: eubacterial origin of eukaryotic glyceraldehyde-3-phosphate dehydrogenase genes.
    Martin W; Brinkmann H; Savonna C; Cerff R
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8692-6. PubMed ID: 8378350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer.
    Figge RM; Schubert M; Brinkmann H; Cerff R
    Mol Biol Evol; 1999 Apr; 16(4):429-40. PubMed ID: 10331270
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular distribution of the reductive and oxidative pentose phosphate pathways in two diatoms.
    Gruber A; Weber T; Bártulos CR; Vugrinec S; Kroth PG
    J Basic Microbiol; 2009 Feb; 49(1):58-72. PubMed ID: 19206144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional divergence and convergent evolution in the plastid-targeted glyceraldehyde-3-phosphate dehydrogenases of diverse eukaryotic algae.
    Gaston D; Roger AJ
    PLoS One; 2013; 8(7):e70396. PubMed ID: 23936198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolutionary relatedness between glycolytic enzymes most frequently occurring in genomes.
    Oslancová A; Janecek S
    Folia Microbiol (Praha); 2004; 49(3):247-58. PubMed ID: 15259764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of glutamine synthetase in heterokonts: evidence for endosymbiotic gene transfer and the early evolution of photosynthesis.
    Robertson DL; Tartar A
    Mol Biol Evol; 2006 May; 23(5):1048-55. PubMed ID: 16495348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolutionary origin of red algae as deduced from the nuclear genes encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases from Chondrus crispus.
    Liaud MF; Valentin C; Martin W; Bouget FY; Kloareg B; Cerff R
    J Mol Evol; 1994 Apr; 38(4):319-27. PubMed ID: 8007000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase.
    Branny P; de la Torre F; Garel JR
    Microbiology (Reading); 1998 Apr; 144 ( Pt 4)():905-914. PubMed ID: 9579064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycolytic enzyme activities and gene expression in Cicer arietinum exposed to water-deficit stress.
    Khanna SM; Taxak PC; Jain PK; Saini R; Srinivasan R
    Appl Biochem Biotechnol; 2014 Aug; 173(8):2241-53. PubMed ID: 25008554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-species analysis of the glycolytic pathway by comparison of molecular interaction fields.
    Stein M; Gabdoulline RR; Wade RC
    Mol Biosyst; 2010 Jan; 6(1):152-64. PubMed ID: 20024078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution crystal structure and redox properties of chloroplastic triosephosphate isomerase from Chlamydomonas reinhardtii.
    Zaffagnini M; Michelet L; Sciabolini C; Di Giacinto N; Morisse S; Marchand CH; Trost P; Fermani S; Lemaire SD
    Mol Plant; 2014 Jan; 7(1):101-20. PubMed ID: 24157611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.