These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Microbial tailoring of acyl peptidic siderophores. Gauglitz JM; Iinishi A; Ito Y; Butler A Biochemistry; 2014 Apr; 53(16):2624-31. PubMed ID: 24735218 [TBL] [Abstract][Full Text] [Related]
3. Structural characterization of amphiphilic siderophores produced by a soda lake isolate, Halomonas sp. SL01, reveals cysteine-, phenylalanine- and proline-containing head groups. Figueroa LO; Schwarz B; Richards AM Extremophiles; 2015 Nov; 19(6):1183-92. PubMed ID: 26439615 [TBL] [Abstract][Full Text] [Related]
5. Identification of new members within suites of amphiphilic marine siderophores. Vraspir JM; Holt PD; Butler A Biometals; 2011 Feb; 24(1):85-92. PubMed ID: 20853137 [TBL] [Abstract][Full Text] [Related]
6. Membrane affinity of the amphiphilic marinobactin siderophores. Xu G; Martinez JS; Groves JT; Butler A J Am Chem Soc; 2002 Nov; 124(45):13408-15. PubMed ID: 12418892 [TBL] [Abstract][Full Text] [Related]
7. Vesicles to concentrate iron in low-iron media: an attempt to mimic marine siderophores. Bednarova L; Brandel J; d'Hardemare Adu M; Bednar J; Serratrice G; Pierre JL Chemistry; 2008; 14(12):3680-6. PubMed ID: 18293349 [TBL] [Abstract][Full Text] [Related]
9. Loihichelins A-F, a suite of amphiphilic siderophores produced by the marine bacterium Halomonas LOB-5. Homann VV; Sandy M; Tincu JA; Templeton AS; Tebo BM; Butler A J Nat Prod; 2009 May; 72(5):884-8. PubMed ID: 19320498 [TBL] [Abstract][Full Text] [Related]
10. Marine siderophores and microbial iron mobilization. Butler A Biometals; 2005 Aug; 18(4):369-74. PubMed ID: 16158229 [TBL] [Abstract][Full Text] [Related]
12. Petrobactin, a photoreactive siderophore produced by the oil-degrading marine bacterium Marinobacter hydrocarbonoclasticus. Barbeau K; Zhang G; Live DH; Butler A J Am Chem Soc; 2002 Jan; 124(3):378-9. PubMed ID: 11792199 [TBL] [Abstract][Full Text] [Related]
13. Siderophore-based microbial adaptations to iron scarcity across the eastern Pacific Ocean. Boiteau RM; Mende DR; Hawco NJ; McIlvin MR; Fitzsimmons JN; Saito MA; Sedwick PN; DeLong EF; Repeta DJ Proc Natl Acad Sci U S A; 2016 Dec; 113(50):14237-14242. PubMed ID: 27911777 [TBL] [Abstract][Full Text] [Related]
14. Structure and membrane affinity of a suite of amphiphilic siderophores produced by a marine bacterium. Martinez JS; Carter-Franklin JN; Mann EL; Martin JD; Haygood MG; Butler A Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3754-9. PubMed ID: 12651947 [TBL] [Abstract][Full Text] [Related]
15. Siderophores of Marinobacter aquaeolei: petrobactin and its sulfonated derivatives. Homann VV; Edwards KJ; Webb EA; Butler A Biometals; 2009 Aug; 22(4):565-71. PubMed ID: 19357970 [TBL] [Abstract][Full Text] [Related]
16. Iron transport in the genus Marinobacter. Amin SA; Green DH; Al Waheeb D; Gärdes A; Carrano CJ Biometals; 2012 Feb; 25(1):135-47. PubMed ID: 21894542 [TBL] [Abstract][Full Text] [Related]
17. A suite of citrate-derived siderophores from a marine Vibrio species isolated following the Deepwater Horizon oil spill. Gauglitz JM; Zhou H; Butler A J Inorg Biochem; 2012 Feb; 107(1):90-5. PubMed ID: 22178670 [TBL] [Abstract][Full Text] [Related]
18. Metal-dependent self-assembly of a microbial surfactant. Owen T; Pynn R; Hammouda B; Butler A Langmuir; 2007 Aug; 23(18):9393-400. PubMed ID: 17655261 [TBL] [Abstract][Full Text] [Related]
19. Amino acid variability in the peptide composition of a suite of amphiphilic peptide siderophores from an open ocean Vibrio species. Gauglitz JM; Butler A J Biol Inorg Chem; 2013 Jun; 18(5):489-97. PubMed ID: 23564034 [TBL] [Abstract][Full Text] [Related]
20. Photochemical cycling of iron in the surface ocean mediated by microbial iron(III)-binding ligands. Barbeau K; Rue EL; Bruland KW; Butler A Nature; 2001 Sep; 413(6854):409-13. PubMed ID: 11574885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]