These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 10679192)
1. Retinoic acid extends the in vitro life span of normal human oral keratinocytes by decreasing p16(INK4A) expression and maintaining telomerase activity. You YO; Lee G; Min BM Biochem Biophys Res Commun; 2000 Feb; 268(2):268-74. PubMed ID: 10679192 [TBL] [Abstract][Full Text] [Related]
2. Retinoic acid delays keratinocyte senescence by suppression of betaig-h3 and p16 expression and induction of telomerase activity. Min BM; Oh JE; Choi CM Int J Mol Med; 2004 Jan; 13(1):25-31. PubMed ID: 14654966 [TBL] [Abstract][Full Text] [Related]
3. Replicative senescence of normal human oral keratinocytes is associated with the loss of telomerase activity without shortening of telomeres. Kang MK; Guo W; Park NH Cell Growth Differ; 1998 Jan; 9(1):85-95. PubMed ID: 9438392 [TBL] [Abstract][Full Text] [Related]
4. Telomerase induces immortalization of human esophageal keratinocytes without p16INK4a inactivation. Harada H; Nakagawa H; Oyama K; Takaoka M; Andl CD; Jacobmeier B; von Werder A; Enders GH; Opitz OG; Rustgi AK Mol Cancer Res; 2003 Aug; 1(10):729-38. PubMed ID: 12939398 [TBL] [Abstract][Full Text] [Related]
5. Senescence occurs with hTERT repression and limited telomere shortening in human oral keratinocytes cultured with feeder cells. Kang MK; Kameta A; Shin KH; Baluda MA; Park NH J Cell Physiol; 2004 Jun; 199(3):364-70. PubMed ID: 15095283 [TBL] [Abstract][Full Text] [Related]
6. Keratinocyte growth conditions modulate telomerase expression, senescence, and immortalization by human papillomavirus type 16 E6 and E7 oncogenes. Fu B; Quintero J; Baker CC Cancer Res; 2003 Nov; 63(22):7815-24. PubMed ID: 14633708 [TBL] [Abstract][Full Text] [Related]
7. Possible involvement of p21 but not of p16 or p53 in keratinocyte senescence. Sayama K; Shirakata Y; Midorikawa K; Hanakawa Y; Hashimoto K J Cell Physiol; 1999 Apr; 179(1):40-4. PubMed ID: 10082130 [TBL] [Abstract][Full Text] [Related]
8. Molecular changes associated with oral dysplasia progression and acquisition of immortality: potential for its reversal by 5-azacytidine. McGregor F; Muntoni A; Fleming J; Brown J; Felix DH; MacDonald DG; Parkinson EK; Harrison PR Cancer Res; 2002 Aug; 62(16):4757-66. PubMed ID: 12183435 [TBL] [Abstract][Full Text] [Related]
9. Telomerase activity is sufficient to bypass replicative senescence in human limbal and conjunctival but not corneal keratinocytes. Pellegrini G; Dellambra E; Paterna P; Golisano O; Traverso CE; Rama P; Lacal P; De Luca M Eur J Cell Biol; 2004 Dec; 83(11-12):691-700. PubMed ID: 15679113 [TBL] [Abstract][Full Text] [Related]
10. Distinct mechanisms of cell cycle arrest control the decision between differentiation and senescence in human neuroblastoma cells. Wainwright LJ; Lasorella A; Iavarone A Proc Natl Acad Sci U S A; 2001 Jul; 98(16):9396-400. PubMed ID: 11481496 [TBL] [Abstract][Full Text] [Related]
11. Events in the immortalizing process of primary human mammary epithelial cells by the catalytic subunit of human telomerase. Kim H; Farris J; Christman SA; Kong BW; Foster LK; O'Grady SM; Foster DN Biochem J; 2002 Aug; 365(Pt 3):765-72. PubMed ID: 11978176 [TBL] [Abstract][Full Text] [Related]
12. Single-cell analysis of p16(INK4a) and p21(WAF1) expression suggests distinct mechanisms of senescence in normal human and Li-Fraumeni Syndrome fibroblasts. Mirzayans R; Andrais B; Scott A; Paterson MC; Murray D J Cell Physiol; 2010 Apr; 223(1):57-67. PubMed ID: 20039273 [TBL] [Abstract][Full Text] [Related]
13. Bypass of telomere-dependent replicative senescence (M1) upon overexpression of Cdk4 in normal human epithelial cells. Ramirez RD; Herbert BS; Vaughan MB; Zou Y; Gandia K; Morales CP; Wright WE; Shay JW Oncogene; 2003 Jan; 22(3):433-44. PubMed ID: 12545164 [TBL] [Abstract][Full Text] [Related]
14. Histone deacetylase inhibitors induce a senescence-like state in human cells by a p16-dependent mechanism that is independent of a mitotic clock. Munro J; Barr NI; Ireland H; Morrison V; Parkinson EK Exp Cell Res; 2004 May; 295(2):525-38. PubMed ID: 15093749 [TBL] [Abstract][Full Text] [Related]
15. Increased p16 expression with first senescence arrest in human mammary epithelial cells and extended growth capacity with p16 inactivation. Brenner AJ; Stampfer MR; Aldaz CM Oncogene; 1998 Jul; 17(2):199-205. PubMed ID: 9674704 [TBL] [Abstract][Full Text] [Related]
16. Ha-Ras(G12V) induces senescence in primary and immortalized human esophageal keratinocytes with p53 dysfunction. Takaoka M; Harada H; Deramaudt TB; Oyama K; Andl CD; Johnstone CN; Rhoades B; Enders GH; Opitz OG; Nakagawa H Oncogene; 2004 Sep; 23(40):6760-8. PubMed ID: 15273725 [TBL] [Abstract][Full Text] [Related]
17. A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Evans RJ; Wyllie FS; Wynford-Thomas D; Kipling D; Jones CJ Cancer Res; 2003 Aug; 63(16):4854-61. PubMed ID: 12941806 [TBL] [Abstract][Full Text] [Related]
18. Expression of catalytically active telomerase does not prevent premature senescence caused by overexpression of oncogenic Ha-Ras in normal human fibroblasts. Wei S; Wei S; Sedivy JM Cancer Res; 1999 Apr; 59(7):1539-43. PubMed ID: 10197626 [TBL] [Abstract][Full Text] [Related]
19. Cyclin-dependent kinase inhibitor p16(INK4a) and telomerase may co-modulate endothelial progenitor cells senescence. Yang DG; Liu L; Zheng XY Ageing Res Rev; 2008 Apr; 7(2):137-46. PubMed ID: 18343732 [TBL] [Abstract][Full Text] [Related]
20. Human keratinocytes that express hTERT and also bypass a p16(INK4a)-enforced mechanism that limits life span become immortal yet retain normal growth and differentiation characteristics. Dickson MA; Hahn WC; Ino Y; Ronfard V; Wu JY; Weinberg RA; Louis DN; Li FP; Rheinwald JG Mol Cell Biol; 2000 Feb; 20(4):1436-47. PubMed ID: 10648628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]