BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 10679683)

  • 21. Bone grafts and biomaterials substitutes for bone defect repair: A review.
    Wang W; Yeung KWK
    Bioact Mater; 2017 Dec; 2(4):224-247. PubMed ID: 29744432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antibacterial and bioactive coatings on titanium implant surfaces.
    Kulkarni Aranya A; Pushalkar S; Zhao M; LeGeros RZ; Zhang Y; Saxena D
    J Biomed Mater Res A; 2017 Aug; 105(8):2218-2227. PubMed ID: 28380669
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Substituted hydroxyapatites with antibacterial properties.
    Kolmas J; Groszyk E; Kwiatkowska-Różycka D
    Biomed Res Int; 2014; 2014():178123. PubMed ID: 24949423
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bone regeneration of rat tibial defect by zinc-tricalcium phosphate (Zn-TCP) synthesized from porous Foraminifera carbonate macrospheres.
    Chou J; Hao J; Kuroda S; Bishop D; Ben-Nissan B; Milthorpe B; Otsuka M
    Mar Drugs; 2013 Dec; 11(12):5148-58. PubMed ID: 24351911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibacterial property expressed by a novel calcium phosphate glass.
    Liu L; Pushalkar S; Saxena D; LeGeros RZ; Zhang Y
    J Biomed Mater Res B Appl Biomater; 2014 Apr; 102(3):423-9. PubMed ID: 24039127
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The therapeutic effect on bone mineral formation from biomimetic zinc containing tricalcium phosphate (ZnTCP) in zinc-deficient osteoporotic mice.
    Chou J; Hao J; Hatoyama H; Ben-Nissan B; Milthorpe B; Otsuka M
    PLoS One; 2013; 8(8):e71821. PubMed ID: 23967249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro and in vivo evaluation of zinc-modified ca-si-based ceramic coating for bone implants.
    Yu J; Li K; Zheng X; He D; Ye X; Wang M
    PLoS One; 2013; 8(3):e57564. PubMed ID: 23483914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zinc-substituted hydroxyapatite: a biomaterial with enhanced bioactivity and antibacterial properties.
    Thian ES; Konishi T; Kawanobe Y; Lim PN; Choong C; Ho B; Aizawa M
    J Mater Sci Mater Med; 2013 Feb; 24(2):437-45. PubMed ID: 23160913
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substituted hydroxyapatites for bone repair.
    Shepherd JH; Shepherd DV; Best SM
    J Mater Sci Mater Med; 2012 Oct; 23(10):2335-47. PubMed ID: 22389101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments.
    Mouriño V; Cattalini JP; Boccaccini AR
    J R Soc Interface; 2012 Mar; 9(68):401-19. PubMed ID: 22158843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The optimum zinc content in set calcium phosphate cement for promoting bone formation in vivo.
    Li X; Sogo Y; Ito A; Mutsuzaki H; Ochiai N; Kobayashi T; Nakamura S; Yamashita K; Legeros RZ
    Mater Sci Eng C Mater Biol Appl; 2009 Apr; 29(3):969-975. PubMed ID: 21461346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Na-doped β-tricalcium phosphate: physico-chemical and in vitro biological properties.
    Obadia L; Julien M; Quillard S; Rouillon T; Pilet P; Guicheux J; Bujoli B; Bouler JM
    J Mater Sci Mater Med; 2011 Mar; 22(3):593-600. PubMed ID: 21221733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants.
    Xue W; Dahlquist K; Banerjee A; Bandyopadhyay A; Bose S
    J Mater Sci Mater Med; 2008 Jul; 19(7):2669-77. PubMed ID: 18270806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics.
    Barrère F; van Blitterswijk CA; de Groot K
    Int J Nanomedicine; 2006; 1(3):317-32. PubMed ID: 17717972
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro bioactivity and osteoblast-like cell test of zinc containing fluoridated hydroxyapatite films.
    Miao S; Weng W; Cheng K; Du P; Shen G; Han G; Huang X; Yan W; Zhang S
    J Mater Sci Mater Med; 2007 Oct; 18(10):2101-5. PubMed ID: 17562136
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of phosphate-based glasses on T lymphocytes in vitro.
    Kesisoglou A; Knowles JC; Olsen I
    J Mater Sci Mater Med; 2002 Dec; 13(12):1189-92. PubMed ID: 15348664
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora.
    Kawamura H; Ito A; Miyakawa S; Layrolle P; Ojima K; Ichinose N; Tateishi T
    J Biomed Mater Res; 2000 May; 50(2):184-90. PubMed ID: 10679683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term implantation of zinc-releasing calcium phosphate ceramics in rabbit femora.
    Kawamura H; Ito A; Muramatsu T; Miyakawa S; Ochiai N; Tateishi T
    J Biomed Mater Res A; 2003 Jun; 65(4):468-74. PubMed ID: 12761837
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics.
    Ito A; Ojima K; Naito H; Ichinose N; Tateishi T
    J Biomed Mater Res; 2000 May; 50(2):178-83. PubMed ID: 10679682
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dissolution rate of zinc-containing beta-tricalcium phosphate ceramics.
    Ito A; Senda K; Sogo Y; Oyane A; Yamazaki A; Legeros RZ
    Biomed Mater; 2006 Sep; 1(3):134-9. PubMed ID: 18458394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.