These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10680687)

  • 21. Fe2+ binding to apo and holo mammalian ferritin.
    Jacobs D; Watt GD; Frankel RB; Papaefthymiou GC
    Biochemistry; 1989 Nov; 28(23):9216-21. PubMed ID: 2557919
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Uptake and release of ferritin iron. Surface effects and exchange within the crystalline core.
    Hoy TG; Harrison PM; Shabbir M
    Biochem J; 1974 Jun; 139(3):603-7. PubMed ID: 4855331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proton magnetic relaxation dispersion in solutions of the cuproprotein diamine oxidase.
    Kluetz MD; Schmidt PG
    Biophys J; 1980 Feb; 29(2):283-93. PubMed ID: 6266527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic field dependence of solvent proton relaxation by solute dysprosium (III) complexes.
    Kellar KE; Fossheim SL; Koenig SH
    Invest Radiol; 1998 Nov; 33(11):835-40. PubMed ID: 9818318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurements of water proton NMR spin-lattice relaxation time in the rotating frame (T1p) for studying motions in solutions of giant macro-molecules and supramolecular particles (T2 virus).
    James TL
    Physiol Chem Phys; 1977; 9(2):161-6. PubMed ID: 601108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relaxivities of human liver and spleen ferritin.
    Gossuin Y; Muller RN; Gillis P; Bartel L
    Magn Reson Imaging; 2005 Dec; 23(10):1001-4. PubMed ID: 16376184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnetic cross-relaxation and chemical exchange between microporous solid and mobile liquid phases.
    Whaley M; Lawence AJ; Korb JP; Bryant RG
    Solid State Nucl Magn Reson; 1996 Dec; 7(3):247-52. PubMed ID: 9050162
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular theory of field-dependent proton spin-lattice relaxation in tissue.
    Halle B
    Magn Reson Med; 2006 Jul; 56(1):60-72. PubMed ID: 16732594
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates.
    Koenig SH
    Biophys J; 1988 Jan; 53(1):91-6. PubMed ID: 2829984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles.
    Volatron J; Carn F; Kolosnjaj-Tabi J; Javed Y; Vuong QL; Gossuin Y; Ménager C; Luciani N; Charron G; Hémadi M; Alloyeau D; Gazeau F
    Small; 2017 Jan; 13(2):. PubMed ID: 28060465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proton exchange as a relaxation mechanism for T1 in the rotating frame in native and immobilized protein solutions.
    Mäkelä HI; Gröhn OH; Kettunen MI; Kauppinen RA
    Biochem Biophys Res Commun; 2001 Dec; 289(4):813-8. PubMed ID: 11735118
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nuclear magnetic resonance study of ligand binding to Mn-aspartate transcarbamylase.
    Fan S; Harrison LW; Hammes GG
    Biochemistry; 1975 May; 14(10):2219-24. PubMed ID: 807235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of magnetic field and iron content on NMR proton relaxation of liver, spleen and brain tissues.
    Hocq A; Luhmer M; Saussez S; Louryan S; Gillis P; Gossuin Y
    Contrast Media Mol Imaging; 2015; 10(2):144-52. PubMed ID: 24954138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ferritin effect on the transverse relaxation of water: NMR microscopy at 9.4 T.
    Gottesfeld Z; Neeman M
    Magn Reson Med; 1996 Apr; 35(4):514-20. PubMed ID: 8992201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodology for the measurement and analysis of relaxation times in proton imaging.
    MacFall JR; Wehrli FW; Breger RK; Johnson GA
    Magn Reson Imaging; 1987; 5(3):209-20. PubMed ID: 3041152
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents.
    Tóth E; Bolskar RD; Borel A; González G; Helm L; Merbach AE; Sitharaman B; Wilson LJ
    J Am Chem Soc; 2005 Jan; 127(2):799-805. PubMed ID: 15643906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of creatine guanidinium proton exchange by water-exchange (WEX) spectroscopy for absolute-pH CEST imaging in vitro.
    Goerke S; Zaiss M; Bachert P
    NMR Biomed; 2014 May; 27(5):507-18. PubMed ID: 24535718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iron core formation in horse spleen ferritin: magnetic susceptibility, pH, and compositional studies.
    Hilty S; Webb B; Frankel RB; Watt GD
    J Inorg Biochem; 1994 Nov; 56(3):173-85. PubMed ID: 7798900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein rotational relaxation as studied by solvent 1H and 2H magnetic relaxation.
    Hallenga K; Koenig SH
    Biochemistry; 1976 Sep; 15(19):4255-64. PubMed ID: 963035
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of chemical exchange on transverse relaxation at low and moderate magnetic field strengths for sugar solutions representative of fruit tissues analyzed by simulation and MRI experiments.
    Leforestier R; Mariette F; Musse M
    J Magn Reson; 2021 Jan; 322():106872. PubMed ID: 33232906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.