These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 10681322)
1. Inactivation of the ampD gene in Pseudomonas aeruginosa leads to moderate-basal-level and hyperinducible AmpC beta-lactamase expression. Langaee TY; Gagnon L; Huletsky A Antimicrob Agents Chemother; 2000 Mar; 44(3):583-9. PubMed ID: 10681322 [TBL] [Abstract][Full Text] [Related]
2. Role of ampD homologs in overproduction of AmpC in clinical isolates of Pseudomonas aeruginosa. Schmidtke AJ; Hanson ND Antimicrob Agents Chemother; 2008 Nov; 52(11):3922-7. PubMed ID: 18779353 [TBL] [Abstract][Full Text] [Related]
3. Stepwise upregulation of the Pseudomonas aeruginosa chromosomal cephalosporinase conferring high-level beta-lactam resistance involves three AmpD homologues. Juan C; Moyá B; Pérez JL; Oliver A Antimicrob Agents Chemother; 2006 May; 50(5):1780-7. PubMed ID: 16641450 [TBL] [Abstract][Full Text] [Related]
4. Constitutive high expression of chromosomal beta-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS1669) located in ampD. Bagge N; Ciofu O; Hentzer M; Campbell JI; Givskov M; Høiby N Antimicrob Agents Chemother; 2002 Nov; 46(11):3406-11. PubMed ID: 12384343 [TBL] [Abstract][Full Text] [Related]
5. NagZ inactivation prevents and reverts beta-lactam resistance, driven by AmpD and PBP 4 mutations, in Pseudomonas aeruginosa. Zamorano L; Reeve TM; Deng L; Juan C; Moyá B; Cabot G; Vocadlo DJ; Mark BL; Oliver A Antimicrob Agents Chemother; 2010 Sep; 54(9):3557-63. PubMed ID: 20566764 [TBL] [Abstract][Full Text] [Related]
6. Model system to evaluate the effect of ampD mutations on AmpC-mediated beta-lactam resistance. Schmidtke AJ; Hanson ND Antimicrob Agents Chemother; 2006 Jun; 50(6):2030-7. PubMed ID: 16723562 [TBL] [Abstract][Full Text] [Related]
7. An ampD gene in Pseudomonas aeruginosa encodes a negative regulator of AmpC beta-lactamase expression. Langaee TY; Dargis M; Huletsky A Antimicrob Agents Chemother; 1998 Dec; 42(12):3296-300. PubMed ID: 9835532 [TBL] [Abstract][Full Text] [Related]
8. Benefit of having multiple ampD genes for acquiring beta-lactam resistance without losing fitness and virulence in Pseudomonas aeruginosa. Moya B; Juan C; Albertí S; Pérez JL; Oliver A Antimicrob Agents Chemother; 2008 Oct; 52(10):3694-700. PubMed ID: 18644952 [TBL] [Abstract][Full Text] [Related]
9. DNA sequence differences of ampD mutants of Citrobacter freundii. Stapleton P; Shannon K; Phillips I Antimicrob Agents Chemother; 1995 Nov; 39(11):2494-8. PubMed ID: 8585732 [TBL] [Abstract][Full Text] [Related]
10. Signalling proteins in enterobacterial AmpC beta-lactamase regulation. Lindquist S; Galleni M; Lindberg F; Normark S Mol Microbiol; 1989 Aug; 3(8):1091-102. PubMed ID: 2691840 [TBL] [Abstract][Full Text] [Related]
11. Role of AmpD, OprF and penicillin-binding proteins in beta-lactam resistance in clinical isolates of Pseudomonas aeruginosa. Bratu S; Landman D; Gupta J; Quale J J Med Microbiol; 2007 Jun; 56(Pt 6):809-814. PubMed ID: 17510267 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains. Juan C; Maciá MD; Gutiérrez O; Vidal C; Pérez JL; Oliver A Antimicrob Agents Chemother; 2005 Nov; 49(11):4733-8. PubMed ID: 16251318 [TBL] [Abstract][Full Text] [Related]
13. Stability of FR264205 against AmpC beta-lactamase of Pseudomonas aeruginosa. Takeda S; Ishii Y; Hatano K; Tateda K; Yamaguchi K Int J Antimicrob Agents; 2007 Nov; 30(5):443-5. PubMed ID: 17644319 [TBL] [Abstract][Full Text] [Related]
14. Cell Wall Recycling-Linked Coregulation of AmpC and PenB β-Lactamases through ampD Mutations in Burkholderia cenocepacia. Hwang J; Kim HS Antimicrob Agents Chemother; 2015 Dec; 59(12):7602-10. PubMed ID: 26416862 [TBL] [Abstract][Full Text] [Related]
15. Characterization of acquired β-lactamases in Glen KA; Lamont IL Microbiol Spectr; 2024 Oct; 12(10):e0069424. PubMed ID: 39248479 [No Abstract] [Full Text] [Related]
16. Impact of AmpC Derepression on Fitness and Virulence: the Mechanism or the Pathway? Pérez-Gallego M; Torrens G; Castillo-Vera J; Moya B; Zamorano L; Cabot G; Hultenby K; Albertí S; Mellroth P; Henriques-Normark B; Normark S; Oliver A; Juan C mBio; 2016 Oct; 7(5):. PubMed ID: 27795406 [TBL] [Abstract][Full Text] [Related]
17. Mutations in β-Lactamase AmpC Increase Resistance of Pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins. Berrazeg M; Jeannot K; Ntsogo Enguéné VY; Broutin I; Loeffert S; Fournier D; Plésiat P Antimicrob Agents Chemother; 2015 Oct; 59(10):6248-55. PubMed ID: 26248364 [TBL] [Abstract][Full Text] [Related]
18. Pseudomonas aeruginosa isolates from patients with cystic fibrosis have different beta-lactamase expression phenotypes but are homogeneous in the ampC-ampR genetic region. Campbell JI; Ciofu O; Høiby N Antimicrob Agents Chemother; 1997 Jun; 41(6):1380-4. PubMed ID: 9174204 [TBL] [Abstract][Full Text] [Related]
19. Inactivation of the glycoside hydrolase NagZ attenuates antipseudomonal beta-lactam resistance in Pseudomonas aeruginosa. Asgarali A; Stubbs KA; Oliver A; Vocadlo DJ; Mark BL Antimicrob Agents Chemother; 2009 Jun; 53(6):2274-82. PubMed ID: 19273679 [TBL] [Abstract][Full Text] [Related]
20. ampG gene of Pseudomonas aeruginosa and its role in β-lactamase expression. Zhang Y; Bao Q; Gagnon LA; Huletsky A; Oliver A; Jin S; Langaee T Antimicrob Agents Chemother; 2010 Nov; 54(11):4772-9. PubMed ID: 20713660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]