These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 10681325)
1. Antibacterial and antimembrane activities of cecropin A in Escherichia coli. Silvestro L; Weiser JN; Axelsen PH Antimicrob Agents Chemother; 2000 Mar; 44(3):602-7. PubMed ID: 10681325 [TBL] [Abstract][Full Text] [Related]
2. Resistance of early stationary phase E. coli to membrane permeabilization by the antimicrobial peptide Cecropin A. Agrawal A; Rangarajan N; Weisshaar JC Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182990. PubMed ID: 31129116 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli. Wu M; Maier E; Benz R; Hancock RE Biochemistry; 1999 Jun; 38(22):7235-42. PubMed ID: 10353835 [TBL] [Abstract][Full Text] [Related]
4. The concentration-dependent membrane activity of cecropin A. Silvestro L; Gupta K; Weiser JN; Axelsen PH Biochemistry; 1997 Sep; 36(38):11452-60. PubMed ID: 9298965 [TBL] [Abstract][Full Text] [Related]
5. Dual mechanism of bacterial lethality for a cationic sequence-random copolymer that mimics host-defense antimicrobial peptides. Epand RF; Mowery BP; Lee SE; Stahl SS; Lehrer RI; Gellman SH; Epand RM J Mol Biol; 2008 May; 379(1):38-50. PubMed ID: 18440552 [TBL] [Abstract][Full Text] [Related]
6. pH-dependent disruption of Escherichia coli ATCC 25922 and model membranes by the human antimicrobial peptides hepcidin 20 and 25. Maisetta G; Vitali A; Scorciapino MA; Rinaldi AC; Petruzzelli R; Brancatisano FL; Esin S; Stringaro A; Colone M; Luzi C; Bozzi A; Campa M; Batoni G FEBS J; 2013 Jun; 280(12):2842-54. PubMed ID: 23587102 [TBL] [Abstract][Full Text] [Related]
7. Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides. Han FF; Gao YH; Luan C; Xie YG; Liu YF; Wang YZ J Dairy Sci; 2013 Jun; 96(6):3471-87. PubMed ID: 23567049 [TBL] [Abstract][Full Text] [Related]
8. The functional interaction between abaecin and pore-forming peptides indicates a general mechanism of antibacterial potentiation. Rahnamaeian M; Cytryńska M; Zdybicka-Barabas A; Vilcinskas A Peptides; 2016 Apr; 78():17-23. PubMed ID: 26845197 [TBL] [Abstract][Full Text] [Related]
9. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of Gram-negative bacteria. Matsuzaki K; Sugishita K; Harada M; Fujii N; Miyajima K Biochim Biophys Acta; 1997 Jul; 1327(1):119-30. PubMed ID: 9247173 [TBL] [Abstract][Full Text] [Related]
10. Effects of alterations of the E. coli lipopolysaccharide layer on membrane permeabilization events induced by Cecropin A. Agrawal A; Weisshaar JC Biochim Biophys Acta Biomembr; 2018 Jul; 1860(7):1470-1479. PubMed ID: 29684333 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Boman HG; Agerberth B; Boman A Infect Immun; 1993 Jul; 61(7):2978-84. PubMed ID: 8514403 [TBL] [Abstract][Full Text] [Related]
12. An enhancer peptide for membrane-disrupting antimicrobial peptides. Ueno S; Kusaka K; Tamada Y; Zhang H; Minaba M; Kato Y BMC Microbiol; 2010 Feb; 10():46. PubMed ID: 20152058 [TBL] [Abstract][Full Text] [Related]
13. Biochemical property and membrane-peptide interactions of de novo antimicrobial peptides designed by helix-forming units. Ma QQ; Dong N; Shan AS; Lv YF; Li YZ; Chen ZH; Cheng BJ; Li ZY Amino Acids; 2012 Dec; 43(6):2527-36. PubMed ID: 22699557 [TBL] [Abstract][Full Text] [Related]
14. Studies on the interactions of neutral Galleria mellonella cecropin D with living bacterial cells. Zdybicka-Barabas A; Stączek S; Pawlikowska-Pawlęga B; Mak P; Luchowski R; Skrzypiec K; Mendyk E; Wydrych J; Gruszecki WI; Cytryńska M Amino Acids; 2019 Feb; 51(2):175-191. PubMed ID: 30167962 [TBL] [Abstract][Full Text] [Related]
15. Potassium efflux induced by a new lactoferrin-derived peptide mimicking the effect of native human lactoferrin on the bacterial cytoplasmic membrane. Viejo-Díaz M; Andrés MT; Pérez-Gil J; Sánchez M; Fierro JF Biochemistry (Mosc); 2003 Feb; 68(2):217-27. PubMed ID: 12693969 [TBL] [Abstract][Full Text] [Related]
16. Modification of the C terminus of cecropin is essential for broad-spectrum antimicrobial activity. Callaway JE; Lai J; Haselbeck B; Baltaian M; Bonnesen SP; Weickmann J; Wilcox G; Lei SP Antimicrob Agents Chemother; 1993 Aug; 37(8):1614-9. PubMed ID: 8215272 [TBL] [Abstract][Full Text] [Related]
17. Localized permeabilization of E. coli membranes by the antimicrobial peptide Cecropin A. Rangarajan N; Bakshi S; Weisshaar JC Biochemistry; 2013 Sep; 52(38):6584-94. PubMed ID: 23988088 [TBL] [Abstract][Full Text] [Related]
18. Selective toxicity of antimicrobial peptide S-thanatin on bacteria. Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431 [TBL] [Abstract][Full Text] [Related]
19. Binding and action of cecropin and cecropin analogues: antibacterial peptides from insects. Steiner H; Andreu D; Merrifield RB Biochim Biophys Acta; 1988 Apr; 939(2):260-6. PubMed ID: 3128324 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial activity of cecropins. Moore AJ; Beazley WD; Bibby MC; Devine DA J Antimicrob Chemother; 1996 Jun; 37(6):1077-89. PubMed ID: 8836811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]