These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 10682614)

  • 1. [Study of ozonization effects on mineral water components].
    Zhao Y; Yang L; Chen Y; Sha X
    Wei Sheng Yan Jiu; 1998 Mar; 27(2):95-6. PubMed ID: 10682614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Influence of the ozonation on the elimination of arsenic from natural mineral water intended for bottling].
    Drobnik M; Latour T
    Rocz Panstw Zakl Hig; 2006; 57(3):251-8. PubMed ID: 17193745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ozonation of drinking water: part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine.
    von Gunten U
    Water Res; 2003 Apr; 37(7):1469-87. PubMed ID: 12600375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of bromate formation by ozonation of surface waters in drinking water treatment.
    Legube B; Parinet B; Gelinet K; Berne F; Croue JP
    Water Res; 2004 Apr; 38(8):2185-95. PubMed ID: 15087201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of a magnetic ion exchange resin on ozone demand and bromate formation during drinking water treatment.
    Johnson CJ; Singer PC
    Water Res; 2004 Oct; 38(17):3738-50. PubMed ID: 15350426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Purification of lake water using a combined ozonization, filtration and chlorine dioxide treatments. Experience with the water of Garda lake].
    Zanetti F; Leoni E; Muccioli S; Ambrogiani E; Sacchetti R
    Ann Ig; 2005; 17(6):553-63. PubMed ID: 16523714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A drinking water utility's perspective on bromide, bromate, and ozonation.
    Bonacquisti TP
    Toxicology; 2006 Apr; 221(2-3):145-8. PubMed ID: 16545515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Impact of chlorination and ozonization on the total mutagenic activity of drinking water].
    Zhurkov VS; Sokolovskiĭ VV; Mazhaeva TE; Mirkis VI; Borisov VI; Akhal'tseva LV
    Gig Sanit; 1997; (1):11-3. PubMed ID: 9081864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic inactivation of Cryptosporidium parvum using ozone followed by free chlorine in natural water.
    Biswas K; Craik S; Smith DW; Belosevic M
    Water Res; 2003 Nov; 37(19):4737-47. PubMed ID: 14568061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bromide levels in natural waters: its relationship to levels of both chloride and total dissolved solids and the implications for water treatment.
    Magazinovic RS; Nicholson BC; Mulcahy DE; Davey DE
    Chemosphere; 2004 Oct; 57(4):329-35. PubMed ID: 15312731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbicidal efficacy of an advanced oxidation process using ozone/hydrogen peroxide in water treatment.
    Sommer R; Pribil W; Pfleger S; Haider T; Werderitsch M; Gehringer P
    Water Sci Technol; 2004; 50(1):159-64. PubMed ID: 15318503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of H2O2 and (bi)carbonate alkalinity on ammonia's inhibition of bromate formation.
    Hofmann R; Andrews RC
    Water Res; 2006 Oct; 40(18):3343-8. PubMed ID: 16970973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water.
    Kim JH; Elovitz MS; von Gunten U; Shukairy HM; Mariñas BJ
    Water Res; 2007 Jan; 41(2):467-75. PubMed ID: 17123571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivation of Bacillus subtilis spores during ozonation in water treatment plant: influence of pre-treatment and consequences for positioning of the ozonation step.
    Choi Y; Cho M; Lee Y; Choi J; Yoon J
    Chemosphere; 2007 Oct; 69(5):675-81. PubMed ID: 17604815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of constructed wetlands effluent disinfected with ozone.
    Miranda ND; Oliveira EL; Silva GH
    Water Sci Technol; 2014; 70(1):108-13. PubMed ID: 25026587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of electrochemically generated ozone for the disinfection of water and wastewater.
    Tanner BD; Kuwahara S; Gerba CP; Reynolds KA
    Water Sci Technol; 2004; 50(1):19-25. PubMed ID: 15318481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disinfectant decay and disinfection by-products formation model development: chlorination and ozonation by-products.
    Sohn J; Amy G; Cho J; Lee Y; Yoon Y
    Water Res; 2004 May; 38(10):2461-78. PubMed ID: 15159150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorptive ozonation of 2-methylisoborneol in natural water with preventing bromate formation.
    Sagehashi M; Shiraishi K; Fujita H; Fujii T; Sakoda A
    Water Res; 2005 Oct; 39(16):3900-8. PubMed ID: 16131464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Biologically active properties of organic substances contained in mineral waters (Maikop borehole No. 4)].
    Tashinskaia AD; Kudlaenko LN
    Vopr Kurortol Fizioter Lech Fiz Kult; 1968 Jan; 33(1):31-5. PubMed ID: 4913562
    [No Abstract]   [Full Text] [Related]  

  • 20. [Biotests for mineral waters with natural and recombinant luminescent microorganisms].
    Deriabin DG; Aleshina ES
    Prikl Biokhim Mikrobiol; 2008; 44(4):417-21. PubMed ID: 18924408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.