These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10682912)

  • 1. Oligomeric state of wild-type and cysteine-less yeast mitochondrial citrate transport proteins.
    Kotaria R; Mayor JA; Walters DE; Kaplan RS
    J Bioenerg Biomembr; 1999 Dec; 31(6):543-9. PubMed ID: 10682912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The yeast mitochondrial citrate transport protein. Probing the roles of cysteines, Arg(181), and Arg(189) in transporter function.
    Xu Y; Kakhniashvili DA; Gremse DA; Wood DO; Mayor JA; Walters DE; Kaplan RS
    J Biol Chem; 2000 Mar; 275(10):7117-24. PubMed ID: 10702279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of the secondary structure of the cys-less yeast mitochondrial citrate transport protein and four single-cys variants by circular dichroism.
    Cascio M; Mayor JA; Kaplan RS
    J Bioenerg Biomembr; 2004 Oct; 36(5):429-38. PubMed ID: 15534390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High level expression and characterization of the mitochondrial citrate transport protein from the yeast Saccharomyces cerevisiae.
    Kaplan RS; Mayor JA; Gremse DA; Wood DO
    J Biol Chem; 1995 Feb; 270(8):4108-14. PubMed ID: 7876161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The yeast mitochondrial citrate transport protein: molecular determinants of its substrate specificity.
    Aluvila S; Kotaria R; Sun J; Mayor JA; Walters DE; Harrison DHT; Kaplan RS
    J Biol Chem; 2010 Aug; 285(35):27314-27326. PubMed ID: 20551333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial citrate transport protein: probing the secondary structure of transmembrane domain III, identification of residues that likely comprise a portion of the citrate transport pathway, and development of a model for the putative TMDIII-TMDIII' interface.
    Ma C; Kotaria R; Mayor JA; Eriks LR; Dean AM; Walters DE; Kaplan RS
    J Biol Chem; 2004 Jan; 279(2):1533-40. PubMed ID: 14561747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast mitochondrial citrate transport protein. Probing the secondary structure of transmembrane domain iv and identification of residues that likely comprise a portion of the citrate translocation pathway.
    Kaplan RS; Mayor JA; Brauer D; Kotaria R; Walters DE; Dean AM
    J Biol Chem; 2000 Apr; 275(16):12009-16. PubMed ID: 10766832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of the nuclear gene encoding the mitochondrial citrate transport protein from Saccharomyces cerevisiae.
    Kaplan RS; Mayor JA; Kakhniashvili D; Gremse DA; Wood DO; Nelson DR
    Biochem Biophys Res Commun; 1996 Sep; 226(3):657-62. PubMed ID: 8831672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization, purification and properties of the yeast mitochondrial dicarboxylate carrier (Saccharomyces cerevisiae).
    Lançar-Benba J; Foucher B; Saint-Macary M
    Biochimie; 1996; 78(3):195-200. PubMed ID: 8831951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly(142) is critical for tetramerization of CTP synthase from Escherichia coli.
    Lunn FA; Macleod TJ; Bearne SL
    Biochem J; 2008 May; 412(1):113-21. PubMed ID: 18260824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of the substrate binding sites within the yeast mitochondrial citrate transport protein.
    Ma C; Remani S; Sun J; Kotaria R; Mayor JA; Walters DE; Kaplan RS
    J Biol Chem; 2007 Jun; 282(23):17210-20. PubMed ID: 17400551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mitochondrial citrate transport protein: evidence for a steric interaction between glutamine 182 and leucine 120 and its relationship to the substrate translocation pathway and identification of other mechanistically essential residues.
    Ma C; Remani S; Kotaria R; Mayor JA; Walters DE; Kaplan RS
    Biochim Biophys Acta; 2006; 1757(9-10):1271-6. PubMed ID: 16904062
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The yeast mitochondrial citrate transport protein: characterization of transmembrane domain III residue involvement in substrate translocation.
    Ma C; Kotaria R; Mayor JA; Remani S; Walters DE; Kaplan RS
    J Biol Chem; 2005 Jan; 280(3):2331-40. PubMed ID: 15498760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional expression of the tandem-repeated homodimer of the mitochondrial ADP/ATP carrier in Saccharomyces cerevisiae.
    Hatanaka T; Hashimoto M; Majima E; Shinohara Y; Terada H
    Biochem Biophys Res Commun; 1999 Sep; 262(3):726-30. PubMed ID: 10471393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homodimeric mitochondrial phosphate transport protein. Transient subunit/subunit contact site between the transport relevant transmembrane helices A.
    Phelps A; Wohlrab H
    Biochemistry; 2004 May; 43(20):6200-7. PubMed ID: 15147204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The yeast mitochondrial citrate transport protein: determination of secondary structure and solvent accessibility of transmembrane domain IV using site-directed spin labeling.
    Kaplan RS; Mayor JA; Kotaria R; Walters DE; McHaourab HS
    Biochemistry; 2000 Aug; 39(31):9157-63. PubMed ID: 10924109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial phosphate transport. The Saccharomyces cerevisiae (threonine 43 to cysteine) mutant protein explicitly identifies transport with genomic sequence.
    Phelps A; Wohlrab H
    J Biol Chem; 1991 Oct; 266(30):19882-5. PubMed ID: 1939052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization of thiol-specific antioxidant and the essential role of cysteine 47.
    Chae HZ; Uhm TB; Rhee SG
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7022-6. PubMed ID: 8041739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Na/Ca-K exchanger of rod photoreceptor exists as dimer in the plasma membrane.
    Schwarzer A; Kim TS; Hagen V; Molday RS; Bauer PJ
    Biochemistry; 1997 Nov; 36(44):13667-76. PubMed ID: 9354636
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phosphate carrier from yeast mitochondria. Dimerization is a prerequisite for function.
    Schroers A; Burkovski A; Wohlrab H; Krämer R
    J Biol Chem; 1998 Jun; 273(23):14269-76. PubMed ID: 9603933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.