BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 10683244)

  • 1. Cystic fibrosis transmembrane conductance regulator: the purified NBF1+R protein interacts with the purified NBF2 domain to form a stable NBF1+R/NBF2 complex while inducing a conformational change transmitted to the C-terminal region.
    Lu NT; Pedersen PL
    Arch Biochem Biophys; 2000 Mar; 375(1):7-20. PubMed ID: 10683244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein kinase A regulates ATP hydrolysis and dimerization by a CFTR (cystic fibrosis transmembrane conductance regulator) domain.
    Howell LD; Borchardt R; Kole J; Kaz AM; Randak C; Cohn JA
    Biochem J; 2004 Feb; 378(Pt 1):151-9. PubMed ID: 14602047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nucleotide binding folds of the cystic fibrosis transmembrane conductance regulator are extracellularly accessible.
    Gruis DB; Price EM
    Biochemistry; 1997 Jun; 36(25):7739-45. PubMed ID: 9201915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and characterization of the NBD1-R domain region of CFTR: evidence for subunit-subunit interactions.
    Neville DC; Rozanas CR; Tulk BM; Townsend RR; Verkman AS
    Biochemistry; 1998 Feb; 37(8):2401-9. PubMed ID: 9485388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cystic fibrosis transmembrane conductance regulator: the first nucleotide binding fold targets the membrane with retention of its ATP binding function.
    Ko YH; Delannoy M; Pedersen PL
    Biochemistry; 1997 Apr; 36(16):5053-64. PubMed ID: 9125527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cystic fibrosis transmembrane conductance regulator. Overexpression, purification, and characterization of wild type and delta F508 mutant forms of the first nucleotide binding fold in fusion with the maltose-binding protein.
    Ko YH; Thomas PJ; Delannoy MR; Pedersen PL
    J Biol Chem; 1993 Nov; 268(32):24330-8. PubMed ID: 7693699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Association of domains within the cystic fibrosis transmembrane conductance regulator.
    Ostedgaard LS; Rich DP; DeBerg LG; Welsh MJ
    Biochemistry; 1997 Feb; 36(6):1287-94. PubMed ID: 9063876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cystic fibrosis transmembrane conductance regulator: the NBF1+R (nucleotide-binding fold 1 and regulatory domain) segment acting alone catalyses a Co2+/Mn2+/Mg2+-ATPase activity markedly inhibited by both Cd2+ and the transition-state analogue orthovanadate.
    Annereau JP; Ko YH; Pedersen PL
    Biochem J; 2003 Apr; 371(Pt 2):451-62. PubMed ID: 12523935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular studies of CFTR interacting proteins.
    Wang S; Li M
    Pflugers Arch; 2001; 443 Suppl 1():S62-4. PubMed ID: 11845305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermolecular interaction between R domains of cystic fibrosis transmembrane conductance regulator.
    Gupta S; Xie J; Ma J; Davis PB
    Am J Respir Cell Mol Biol; 2004 Feb; 30(2):242-8. PubMed ID: 12933354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical implications of sequence comparisons of the cystic fibrosis transmembrane conductance regulator.
    Tan AL; Ong SA; Venkatesh B
    Arch Biochem Biophys; 2002 May; 401(2):215-22. PubMed ID: 12054472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M; Zhang JT
    Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator: solution structures of peptides based on the Phe508 region, the most common site of disease-causing DeltaF508 mutation.
    Massiah MA; Ko YH; Pedersen PL; Mildvan AS
    Biochemistry; 1999 Jun; 38(23):7453-61. PubMed ID: 10360942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable dimeric assembly of the second membrane-spanning domain of CFTR (cystic fibrosis transmembrane conductance regulator) reconstitutes a chloride-selective pore.
    Ramjeesingh M; Ugwu F; Li C; Dhani S; Huan LJ; Wang Y; Bear CE
    Biochem J; 2003 Nov; 375(Pt 3):633-41. PubMed ID: 12892562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endocytic adaptor complexes bind the C-terminal domain of CFTR.
    Weixel KM; Bradbury NA
    Pflugers Arch; 2001; 443 Suppl 1():S70-4. PubMed ID: 11845307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Definition of a "functional R domain" of the cystic fibrosis transmembrane conductance regulator.
    Chen JM; Scotet V; Ferec C
    Mol Genet Metab; 2000; 71(1-2):245-9. PubMed ID: 11001817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain interdependence in the biosynthetic assembly of CFTR.
    Cui L; Aleksandrov L; Chang XB; Hou YX; He L; Hegedus T; Gentzsch M; Aleksandrov A; Balch WE; Riordan JR
    J Mol Biol; 2007 Jan; 365(4):981-94. PubMed ID: 17113596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel model for the first nucleotide binding domain of the cystic fibrosis transmembrane conductance regulator.
    Annereau JP; Wulbrand U; Vankeerberghen A; Cuppens H; Bontems F; Tümmler B; Cassiman JJ; Stoven V
    FEBS Lett; 1997 May; 407(3):303-8. PubMed ID: 9175873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of CFTR activity by its phosphorylated R domain.
    Winter MC; Welsh MJ
    Nature; 1997 Sep; 389(6648):294-6. PubMed ID: 9305845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Domain-domain associations in cystic fibrosis transmembrane conductance regulator.
    Wang W; He Z; O'Shaughnessy TJ; Rux J; Reenstra WW
    Am J Physiol Cell Physiol; 2002 May; 282(5):C1170-80. PubMed ID: 11940532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.