BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 10683259)

  • 1. Reactivity of the cysteine residues in the protein splicing active center of the Mycobacterium tuberculosis RecA intein.
    Shingledecker K; Jiang Sq; Paulus H
    Arch Biochem Biophys; 2000 Mar; 375(1):138-44. PubMed ID: 10683259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein splicing: evidence for an N-O acyl rearrangement as the initial step in the splicing process.
    Shao Y; Xu MQ; Paulus H
    Biochemistry; 1996 Mar; 35(12):3810-5. PubMed ID: 8620003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc ion effects on individual Ssp DnaE intein splicing steps: regulating pathway progression.
    Nichols NM; Benner JS; Martin DD; Evans TC
    Biochemistry; 2003 May; 42(18):5301-11. PubMed ID: 12731871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding and inhibition of copper ions to RecA inteins from Mycobacterium tuberculosis.
    Zhang L; Xiao N; Pan Y; Zheng Y; Pan Z; Luo Z; Xu X; Liu Y
    Chemistry; 2010 Apr; 16(14):4297-306. PubMed ID: 20209535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism of protein splicing and its modulation by mutation.
    Xu MQ; Perler FB
    EMBO J; 1996 Oct; 15(19):5146-53. PubMed ID: 8895558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein.
    Brenzel S; Kurpiers T; Mootz HD
    Biochemistry; 2006 Feb; 45(6):1571-8. PubMed ID: 16460004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Minimization and stabilization of the Mycobacterium tuberculosis recA intein.
    Hiraga K; Derbyshire V; Dansereau JT; Van Roey P; Belfort M
    J Mol Biol; 2005 Dec; 354(4):916-26. PubMed ID: 16288917
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro splicing of erythropoietin by the Mycobacterium tuberculosis RecA intein without substituting amino acids at the splice junctions.
    Gangopadhyay JP; Jiang SQ; van Berkel P; Paulus H
    Biochim Biophys Acta; 2003 Jan; 1619(2):193-200. PubMed ID: 12527116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing intein-catalyzed thioester formation by unnatural amino acid substitutions in the active site.
    Schwarzer D; Ludwig C; Thiel IV; Mootz HD
    Biochemistry; 2012 Jan; 51(1):233-42. PubMed ID: 22182201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein.
    Mills KV; Lew BM; Jiang S; Paulus H
    Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3543-8. PubMed ID: 9520402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An in vivo screening system against protein splicing useful for the isolation of non-splicing mutants or inhibitors of the RecA intein of Mycobacterium tuberculosis.
    Lew BM; Paulus H
    Gene; 2002 Jan; 282(1-2):169-77. PubMed ID: 11814689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of DNA strand transfer promoted by Mycobacterium smegmatis RecA reveals functional diversity with Mycobacterium tuberculosis RecA.
    Ganesh N; Muniyappa K
    Biochemistry; 2003 Jun; 42(23):7216-25. PubMed ID: 12795618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments.
    Shingledecker K; Jiang SQ; Paulus H
    Gene; 1998 Jan; 207(2):187-95. PubMed ID: 9511761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intein lacking conserved C-terminal motif G retains controllable N-cleavage activity.
    Volkmann G; Liu XQ
    FEBS J; 2011 Sep; 278(18):3431-46. PubMed ID: 21787376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein splicing mechanisms and applications.
    Perler FB
    IUBMB Life; 2005 Jul; 57(7):469-76. PubMed ID: 16081367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pK(a) coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate.
    Du Z; Zheng Y; Patterson M; Liu Y; Wang C
    J Am Chem Soc; 2011 Jul; 133(26):10275-82. PubMed ID: 21604815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional characterization of the precursor and spliced forms of RecA protein of Mycobacterium tuberculosis.
    Kumar RA; Vaze MB; Chandra NR; Vijayan M; Muniyappa K
    Biochemistry; 1996 Feb; 35(6):1793-802. PubMed ID: 8639660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of protein splicing and intein-mediated peptide bond cleavage under high-cell-density conditions.
    Sharma S; Zhang A; Wang H; Harcum SW; Chong S
    Biotechnol Prog; 2003; 19(3):1085-90. PubMed ID: 12790686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extending the scope of site-specific cysteine bioconjugation by appending a prelabeled cysteine tag to proteins using protein trans-splicing.
    Dhar T; Kurpiers T; Mootz HD
    Methods Mol Biol; 2011; 751():131-42. PubMed ID: 21674329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of protein splicing by intein fragment reassembly.
    Southworth MW; Adam E; Panne D; Byer R; Kautz R; Perler FB
    EMBO J; 1998 Feb; 17(4):918-26. PubMed ID: 9463370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.