BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 10683604)

  • 1. Retinoid-dependent gene expression regulates early morphological events in the development of the murine retina.
    Stull DL; Wikler KC
    J Comp Neurol; 2000 Feb; 417(3):289-98. PubMed ID: 10683604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sources and sink of retinoic acid in the embryonic chick retina: distribution of aldehyde dehydrogenase activities, CRABP-I, and sites of retinoic acid inactivation.
    Mey J; McCaffery P; Klemeit M
    Brain Res Dev Brain Res; 2001 Apr; 127(2):135-48. PubMed ID: 11335000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dorsal and ventral retinal territories defined by retinoic acid synthesis, break-down and nuclear receptor expression.
    McCaffery P; Wagner E; O'Neil J; Petkovich M; Dräger UC
    Mech Dev; 1999 Apr; 82(1-2):119-30. PubMed ID: 10354476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of RALDH-1, RALDH-3 and CYP26A1 by transcription factors cVax/Vax2 and Tbx5 in the embryonic chick retina.
    Golz S; Mühleisen T; Schulte D; Mey J
    Int J Dev Neurosci; 2008 Aug; 26(5):435-45. PubMed ID: 18406560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinoic acid establishes ventral retinal characteristics.
    Hyatt GA; Schmitt EA; Marsh-Armstrong N; McCaffery P; Dräger UC; Dowling JE
    Development; 1996 Jan; 122(1):195-204. PubMed ID: 8565830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dorsal and ventral rentinoic territories defined by retinoic acid synthesis, break-down and nuclear receptor expression.
    McCaffery P; Wagner E; O'Neil J; Petkovich M; Dräger UC
    Mech Dev; 1999 Jul; 85(1-2):203-14. PubMed ID: 10490294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinoic acid in the formation of the dorsoventral retina and its central projections.
    Wagner E; McCaffery P; Dräger UC
    Dev Biol; 2000 Jun; 222(2):460-70. PubMed ID: 10837133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pax2 expression and retinal morphogenesis in the normal and Krd mouse.
    Otteson DC; Shelden E; Jones JM; Kameoka J; Hitchcock PF
    Dev Biol; 1998 Jan; 193(2):209-24. PubMed ID: 9473325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina.
    Fan X; Molotkov A; Manabe S; Donmoyer CM; Deltour L; Foglio MH; Cuenca AE; Blaner WS; Lipton SA; Duester G
    Mol Cell Biol; 2003 Jul; 23(13):4637-48. PubMed ID: 12808103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CYP26A1 and CYP26C1 cooperate in degrading retinoic acid within the equatorial retina during later eye development.
    Sakai Y; Luo T; McCaffery P; Hamada H; Dräger UC
    Dev Biol; 2004 Dec; 276(1):143-57. PubMed ID: 15531370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinoic acid synthesis in the developing chick retina.
    Mey J; McCaffery P; Dräger UC
    J Neurosci; 1997 Oct; 17(19):7441-9. PubMed ID: 9295390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinoic acid-dependent regulation of BMP4 and Tbx5 in the embryonic chick retina.
    Golz S; Lantin C; Mey J
    Neuroreport; 2004 Dec; 15(18):2751-5. PubMed ID: 15597047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age-dependent retinoic acid regulation of gene expression distinguishes the cervical, thoracic, lumbar, and sacral spinal cord regions during development.
    Rubin WW; LaMantia AS
    Dev Neurosci; 1999; 21(2):113-25. PubMed ID: 10449983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinoic acid regulates the expression of dorsoventral topographic guidance molecules in the chick retina.
    Sen J; Harpavat S; Peters MA; Cepko CL
    Development; 2005 Dec; 132(23):5147-59. PubMed ID: 16251210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinoic acid receptor (RAR)-alpha is not critically required for mediating retinoic acid effects in the developing mouse retina.
    Cammas L; Trensz F; Jellali A; Ghyselinck NB; Roux MJ; Dollé P
    Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):3281-90. PubMed ID: 20107170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative assessment of retinoid signaling pathways in the developing eye and retina of the chicken embryo.
    Hoover F; Gundersen TE; Ulven SM; Michaille JJ; Blanchet S; Blomhoff R; Glover JC
    J Comp Neurol; 2001 Jul; 436(3):324-35. PubMed ID: 11438933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genes and pathways in optic fissure closure.
    Patel A; Sowden JC
    Semin Cell Dev Biol; 2019 Jul; 91():55-65. PubMed ID: 29198497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular basis for retinoic acid-induced axial truncation.
    Iulianella A; Beckett B; Petkovich M; Lohnes D
    Dev Biol; 1999 Jan; 205(1):33-48. PubMed ID: 9882496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of retinoid-induced differentiation in embryonal carcinoma PCC4.aza1R cells: effects of retinoid-receptor selective ligands.
    Mills KJ; Vollberg TM; Nervi C; Grippo JF; Dawson MI; Jetten AM
    Cell Growth Differ; 1996 Mar; 7(3):327-37. PubMed ID: 8838863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Levels of retinoic acid and retinaldehyde dehydrogenase expression in eyes of the Mitf-vit mouse model of retinal degeneration.
    Duncan T; Swint C; Smith SB; Wiggert BN
    Mol Vis; 1999 Jun; 5():9. PubMed ID: 10385706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.