These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10683737)

  • 21. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction.
    Wu DY; Ugozzoli L; Pal BK; Qian J; Wallace RB
    DNA Cell Biol; 1991 Apr; 10(3):233-8. PubMed ID: 2012681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A coupled one-step reverse transcription PCR procedure for generation of full-length open reading frames.
    Aatsinki JT; Lakkakorpi JT; Pietilä EM; Rajaniemi HJ
    Biotechniques; 1994 Feb; 16(2):282-4, 286-8. PubMed ID: 7514006
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thirty-cycle temperature optimization of a closed-cycle capillary PCR machine.
    Chiou JT; Matsudaira PT; Ehrlich DJ
    Biotechniques; 2002 Sep; 33(3):557-8, 560, 562 passim. PubMed ID: 12238766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative PCR of bacteriophage lambda DNA using a second-generation thermocycler.
    Kuehnelt DM; Kukovetz E; Hofer HP; Schaur RJ
    PCR Methods Appl; 1994 Jun; 3(6):369-71. PubMed ID: 7920244
    [No Abstract]   [Full Text] [Related]  

  • 25. In vitro amplification of DNA fragments greater than 10 kb.
    Kainz P; Schmiedlechner A; Strack HB
    Anal Biochem; 1992 Apr; 202(1):46-9. PubMed ID: 1535762
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates.
    Barnes WM
    Proc Natl Acad Sci U S A; 1994 Mar; 91(6):2216-20. PubMed ID: 8134376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An assessment of optimal conditions for amplification of HIV cDNA using Thermus aquaticus polymerase.
    Carman WF; Kidd AH
    J Virol Methods; 1989 Mar; 23(3):277-89. PubMed ID: 2541153
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regulation of average length of complex PCR product.
    Shagin DA; Lukyanov KA; Vagner LL; Matz MV
    Nucleic Acids Res; 1999 Sep; 27(18):e23. PubMed ID: 10471753
    [TBL] [Abstract][Full Text] [Related]  

  • 29. PCR hot start using primers with the structure of molecular beacons (hairpin-like structure).
    Kaboev OK; Luchkina LA; Tret'iakov AN; Bahrmand AR
    Nucleic Acids Res; 2000 Nov; 28(21):E94. PubMed ID: 11058144
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ polymerase chain reaction detection of viral DNA, single-copy genes, and gene rearrangements in cell suspensions and cytospins.
    Komminoth P; Long AA; Ray R; Wolfe HJ
    Diagn Mol Pathol; 1992 Jun; 1(2):85-97. PubMed ID: 1342961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Changes in the 17 bp spacer in the P(R) promoter of bacteriophage lambda affect steps in open complex formation that precede DNA strand separation.
    McKane M; Gussin GN
    J Mol Biol; 2000 Jun; 299(2):337-49. PubMed ID: 10860742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High and low annealing temperatures increase both specificity and yield in touchdown and stepdown PCR.
    Hecker KH; Roux KH
    Biotechniques; 1996 Mar; 20(3):478-85. PubMed ID: 8679209
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A rapid and simple method for labeling short DNA fragments using Taq polymerase.
    Mizobuchi M; Frohman LA
    Biotechniques; 1992 Mar; 12(3):350-4. PubMed ID: 1571140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Priming efficiency in PCR.
    Rychlik W
    Biotechniques; 1995 Jan; 18(1):84-6, 88-90. PubMed ID: 7702859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of long-distance PCR using a transposon-based model system.
    Ohler LD; Rose EA
    PCR Methods Appl; 1992 Aug; 2(1):51-9. PubMed ID: 1337007
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rapid preparation of Thermus flavus DNA polymerase.
    Harrell RA; Hart RP
    PCR Methods Appl; 1994 Jun; 3(6):372-5. PubMed ID: 7920245
    [No Abstract]   [Full Text] [Related]  

  • 37. High resolution melting analysis for gene scanning.
    Erali M; Wittwer CT
    Methods; 2010 Apr; 50(4):250-61. PubMed ID: 20085814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Amplification of the phage lambda DNA sequence by polymerase chain reaction using thermostable DNA polymerase].
    Glukhov AI; Trofimova ME; Gordeev SA; Grebennikova TV; Vinogradov SV; Kiselev VI; Kramarov VM
    Mol Biol (Mosk); 1991; 25(6):1602-10. PubMed ID: 1667541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Amplification of DNA sequences in Epstein-Barr virus and human immunodeficiency virus using DNA polymerase from Thermus thermophilus].
    Glukhov AI; Gordeev SA; Vinogradov SV; Kiselev VI; Kramarov VM; Kiselev OI; Severin ES
    Mol Biol (Mosk); 1990; 24(3):781-7. PubMed ID: 2169583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of nested primer binding sites on the reproducibility of PCR: mathematical modeling and computer simulation studies.
    Schierwater B; Metzler D; Krüger K; Streit B
    J Comput Biol; 1996; 3(2):235-51. PubMed ID: 8811485
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.