These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 10684117)

  • 1. [Immobilization of rat liver microsomes with liquid lipid membrane encapsulation].
    Lü J; Xie G; Cui T; Xu L
    Wei Sheng Yan Jiu; 1998 May; 27(3):149-50. PubMed ID: 10684117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Reductase activity in the liver microsomes in adult and old rats during immobilization stress].
    Rud'ko NP; Davydov VV
    Vopr Med Khim; 2001; 47(5):506-10. PubMed ID: 11766261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Changes in the composition of the microsomal oxidation system in the cerebral cortex of rats during postnatal ontogenesis. Comparison with the retina].
    Shushakova ND; Efimova MG; Etingof RN
    Zh Evol Biokhim Fiziol; 1997; 33(4-5):385-91. PubMed ID: 9542038
    [No Abstract]   [Full Text] [Related]  

  • 4. Mitochondrial NADPH-linked aquacobalamin reductase is distinct from the NADPH-linked enzyme from microsomal membranes in rat liver.
    Saido H; Watanabe F; Tamura Y; Funae Y; Imaoka S; Nakano Y
    J Nutr; 1993 Nov; 123(11):1868-74. PubMed ID: 8229302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characteristics of purified beef liver NADPH-cytochrome P450 reductase.
    Arinç E; Celik H
    J Biochem Mol Toxicol; 2002; 16(6):286-97. PubMed ID: 12481304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. p-Nitrophenetole deethylase activity of rat liver microsomes entrapped in polyelectrolyte capsules.
    Jung C; Sklenar G; Ristau O; Pommerening K; Rein H
    J Microencapsul; 1987; 4(1):1-9. PubMed ID: 3504492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions of mammalian cytochrome P450, NADPH-cytochrome P450 reductase, and cytochrome b(5) enzymes.
    Shimada T; Mernaugh RL; Guengerich FP
    Arch Biochem Biophys; 2005 Mar; 435(1):207-16. PubMed ID: 15680923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of phase I metabolic enzyme activities in liver microsomes of Mrp2 deficient TR- and EHBR rats.
    Newton DJ; Wang RW; Evans DC
    Life Sci; 2005 Jul; 77(10):1106-15. PubMed ID: 15913659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat microsomes and cytosol immobilized by microencapsulation in artificial cells.
    Yuan ZY; Chang TM
    Int J Artif Organs; 1986 Jan; 9(1):63-8. PubMed ID: 3082770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of a doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) reductase from rat liver plasma membranes.
    Kim C; Crane FL; Faulk WP; Morré DJ
    J Biol Chem; 2002 May; 277(19):16441-7. PubMed ID: 11875069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NADPH-induced oxidative damage of rat liver microsomes: protective role of chlorpromazine and trifluoperazine.
    Khatua AK; Bhattacharyya M
    Pol J Pharmacol; 2001; 53(6):629-34. PubMed ID: 11985337
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of cytochrome P-450 in enzyme reactors and enzyme electrodes.
    Schubert F; Scheller F; Mohr P
    Pharmazie; 1985 Apr; 40(4):235-9. PubMed ID: 3925468
    [No Abstract]   [Full Text] [Related]  

  • 13. Cadmium-dependent enzyme activity alteration is not imputable to lipid peroxidation.
    Casalino E; Calzaretti G; Sblano C; Landriscina C
    Arch Biochem Biophys; 2000 Nov; 383(2):288-95. PubMed ID: 11185565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The inhibitory effect of tannic acid on cytochrome P450 enzymes and NADPH-CYP reductase in rat and human liver microsomes.
    Yao HT; Chang YW; Lan SJ; Yeh TK
    Food Chem Toxicol; 2008 Feb; 46(2):645-53. PubMed ID: 17950511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organelle electrodes.
    Schubert F; Scheller FW
    Methods Enzymol; 1988; 137():152-60. PubMed ID: 3374333
    [No Abstract]   [Full Text] [Related]  

  • 16. Clustering of plasma membrane-bound cytochrome b5 reductase within 'lipid raft' microdomains of the neuronal plasma membrane.
    Samhan-Arias AK; Garcia-Bereguiain MA; Martin-Romero FJ; Gutierrez-Merino C
    Mol Cell Neurosci; 2009 Jan; 40(1):14-26. PubMed ID: 18973815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roles of NADPH-P450 reductase and apo- and holo-cytochrome b5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli.
    Yamazaki H; Nakamura M; Komatsu T; Ohyama K; Hatanaka N; Asahi S; Shimada N; Guengerich FP; Shimada T; Nakajima M; Yokoi T
    Protein Expr Purif; 2002 Apr; 24(3):329-37. PubMed ID: 11922748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Immobilization of proteins and cell fragments using a new method of microencapsulation].
    Pommerening K; Ristau O; Rein H; Dautzenberg H; Loth F
    Biomed Biochim Acta; 1983; 42(7-8):813-23. PubMed ID: 6316945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and characterization of a functional canine variant of cytochrome b5 reductase.
    Roma GW; Crowley LJ; Barber MJ
    Arch Biochem Biophys; 2006 Aug; 452(1):69-82. PubMed ID: 16814740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of chronic exposure to cadmium on renal cytochrome P450-dependent monooxygenase system in rats.
    Plewka A; Plewka D; Nowaczyk G; Brzóska MM; Kamiński M; Moniuszko-Jakoniuk J
    Arch Toxicol; 2004 Apr; 78(4):194-200. PubMed ID: 14595535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.