BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 106847)

  • 21. Degradation of dimethyl nitrosamine by Methylosinus trichosporium OB3b.
    Yoshinari T; Shafer D
    Can J Microbiol; 1990 Dec; 36(12):834-8. PubMed ID: 2127906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of metal-binding and other compounds on methane oxidation by two strains of Methylococcus capsulatus.
    Stirling DI; Dalton H
    Arch Microbiol; 1977 Jul; 114(1):71-6. PubMed ID: 410382
    [No Abstract]   [Full Text] [Related]  

  • 23. Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental implications.
    Fox BG; Borneman JG; Wackett LP; Lipscomb JD
    Biochemistry; 1990 Jul; 29(27):6419-27. PubMed ID: 2207083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of multiple gene copies in particulate methane monooxygenase activity in the methane-oxidizing bacterium Methylococcus capsulatus Bath.
    Stolyar S; Costello AM; Peeples TL; Lidstrom ME
    Microbiology (Reading); 1999 May; 145 ( Pt 5)():1235-1244. PubMed ID: 10376840
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). A novel regulatory protein of enzyme activity.
    Green J; Dalton H
    J Biol Chem; 1985 Dec; 260(29):15795-801. PubMed ID: 3934164
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Comparative characterization of cultured methane-oxidizing bacteria by serological and molecular methods].
    Slobodova NV; Kolganova TV; Bulygina ES; Kuznetsov BB; Turova TP; Kravchenko IK
    Mikrobiologiia; 2006; 75(3):397-403. PubMed ID: 16871808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers.
    Summons RE; Jahnke LL; Roksandic Z
    Geochim Cosmochim Acta; 1994; 58(13):2853-63. PubMed ID: 11540111
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis.
    Lidstrom ME; Wopat AE
    Arch Microbiol; 1984 Nov; 140(1):27-33. PubMed ID: 6442554
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Localization of energy generators in methane oxidizing bacteria].
    Monosov EZ; Netrusov AI
    Mikrobiologiia; 1976 JUL-AUG; 45(4):598-601. PubMed ID: 185500
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alcohol dehydrogenase from Methylobacterium organophilum.
    Wolf HJ; Hanson RS
    Appl Environ Microbiol; 1978 Jul; 36(1):105-14. PubMed ID: 80974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane.
    Rosenzweig AC; Frederick CA; Lippard SJ; Nordlund P
    Nature; 1993 Dec; 366(6455):537-43. PubMed ID: 8255292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Further evidence for multiple pathways in soluble methane-monooxygenase-catalysed oxidations from the measurement of deuterium kinetic isotope effects.
    Wilkins PC; Dalton H; Samuel CJ; Green J
    Eur J Biochem; 1994 Dec; 226(2):555-60. PubMed ID: 8001570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Methane monooxygenase from Methylosinus trichosporium OB3b.
    Fox BG; Froland WA; Jollie DR; Lipscomb JD
    Methods Enzymol; 1990; 188():191-202. PubMed ID: 2280705
    [No Abstract]   [Full Text] [Related]  

  • 34. The methane monooxygenase intrinsic activity of kinds of methanotrophs.
    Zhang Y; Xin J; Chen L; Xia C
    Appl Biochem Biotechnol; 2009 Jun; 157(3):431-41. PubMed ID: 19052919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the mechanism of C-H activation: oxidation of methylcubane by soluble methane monooxygenase from Methylosinus trichosporium OB3b.
    Jin Y; Lipscomb JD
    Biochemistry; 1999 May; 38(19):6178-86. PubMed ID: 10320346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium.
    Patel R; Hou CT; Felix A
    J Bacteriol; 1976 May; 126(2):1017-9. PubMed ID: 4428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Comparative characteristics of the enzymatic systems of methane-utilizing bacteria that oxidize NH2OH and CH3OH].
    Sokolov IG; Romanovskaia VA; Shkurko IuV; Malashenko IuR
    Mikrobiologiia; 1980; 49(2):202-9. PubMed ID: 6771495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient intermediates of the methane monooxygenase catalytic cycle.
    Lee SK; Nesheim JC; Lipscomb JD
    J Biol Chem; 1993 Oct; 268(29):21569-77. PubMed ID: 8408008
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The membrane-associated form of methane mono-oxygenase from Methylococcus capsulatus (Bath) is a copper/iron protein.
    Basu P; Katterle B; Andersson KK; Dalton H
    Biochem J; 2003 Jan; 369(Pt 2):417-27. PubMed ID: 12379148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of intermediates of in vivo trichloroethylene oxidation by the membrane-associated methane monooxygenase.
    Lontoh S; Zahn JA; DiSpirito AA; Semrau JD
    FEMS Microbiol Lett; 2000 May; 186(1):109-13. PubMed ID: 10779721
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.