These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 106847)

  • 61. Spectral and thermodynamic properties of methanobactin from γ-proteobacterial methane oxidizing bacteria: a case for copper competition on a molecular level.
    Choi DW; Bandow NL; McEllistrem MT; Semrau JD; Antholine WE; Hartsel SC; Gallagher W; Zea CJ; Pohl NL; Zahn JA; DiSpirito AA
    J Inorg Biochem; 2010 Dec; 104(12):1240-7. PubMed ID: 20817303
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Stability of genetic markers in methane-oxidizing bacteria].
    Romanovskaia VA; Rokitko PV; Malashenko IuR; Chernaia NA
    Mikrobiol Z; 2002; 64(4):11-8. PubMed ID: 12436866
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts.
    Nguyen TT; Hwang IY; Na JG; Lee EY
    J Ind Microbiol Biotechnol; 2019 May; 46(5):675-685. PubMed ID: 30706246
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions.
    Rosenzweig AC; Brandstetter H; Whittington DA; Nordlund P; Lippard SJ; Frederick CA
    Proteins; 1997 Oct; 29(2):141-52. PubMed ID: 9329079
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ethane oxidation by methane-oxidizing bacteria.
    Hazeu W; de Bruyn JC
    Antonie Van Leeuwenhoek; 1980; 46(5):443-55. PubMed ID: 6786213
    [TBL] [Abstract][Full Text] [Related]  

  • 66. [Role of CO-binding cytochrome c in enzymatic oxidation of methane by the bacterium Methylococcus capsulatus].
    Gvozdev RI; Nikonova EL; Piliashenko-Novokhatnyi AI; Shushenacheva EV; Grigorian AN
    Biokhimiia; 1982 Jul; 47(7):1118-24. PubMed ID: 6288124
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Substrate specificity of soluble methane monooxygenase. Mechanistic implications.
    Green J; Dalton H
    J Biol Chem; 1989 Oct; 264(30):17698-703. PubMed ID: 2808342
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Roles of the methane monooxygenase reductase component in the regulation of catalysis.
    Liu Y; Nesheim JC; Paulsen KE; Stankovich MT; Lipscomb JD
    Biochemistry; 1997 Apr; 36(17):5223-33. PubMed ID: 9136884
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Oxidation of carbon monoxide and methane by Pseudomonas methanica.
    Ferenci T; Strom T; Quayle JR
    J Gen Microbiol; 1975 Nov; 91(1):79-91. PubMed ID: 467
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Purification and characterization of component A of the methane monooxygenase from Methylococcus capsulatus (Bath).
    Woodland MP; Dalton H
    J Biol Chem; 1984 Jan; 259(1):53-9. PubMed ID: 6323414
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The substrate binding cavity of particulate methane monooxygenase from Methylosinus trichosporium OB3b expresses high enantioselectivity for n-butane and n-pentane oxidation to 2-alcohol.
    Miyaji A; Miyoshi T; Motokura K; Baba T
    Biotechnol Lett; 2011 Nov; 33(11):2241-6. PubMed ID: 21744144
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Purification of component A of the soluble methane monooxygenase of Methylococcus capsulatus (Bath) by high-pressure gel permeation chromatography.
    Woodland MP; Dalton H
    Anal Biochem; 1984 Jun; 139(2):459-62. PubMed ID: 6433743
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biodegradation of low-molecular-weight halogenated hydrocarbons by methanotrophic bacteria.
    Hanson RS; Tsien HC; Tsuji K; Brusseau GA; Wackett LP
    FEMS Microbiol Rev; 1990 Dec; 7(3-4):273-8. PubMed ID: 2094287
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Preparative slab electrofocusing of methane monooxygenase from a type I methanotroph Methylomonas GYJ3.
    Liu AM; Li SB; Yu WL; Zhang F; Chen JX; Su P
    Biochem Int; 1990 Dec; 22(6):959-65. PubMed ID: 2128599
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Continuous biosynthesis of epoxypropane in a methanotrophic attached-films reactor].
    Xin JY; Cui JR; Chen JB; Li SB; Xia CG
    Sheng Wu Gong Cheng Xue Bao; 2002 Jan; 18(1):89-93. PubMed ID: 11977608
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Serine-glyoxylate aminotranferases from methanotrophs using different C1-assimilation pathways.
    But SY; Egorova SV; Khmelenina VN; Trotsenko YA
    Antonie Van Leeuwenhoek; 2019 May; 112(5):741-751. PubMed ID: 30511326
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The carbon assimilation pathways of Methylococcus capsulatus, Pseudomonas methanica and Methylosinus trichosporium (OB3B) during growth on methane.
    Strom T; Ferenci T; Quayle JR
    Biochem J; 1974 Dec; 144(3):465-76. PubMed ID: 4377654
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Hydrogenase activity in nitrogen-fixing methane-oxidizing bacteria.
    Bont JA
    Antonie Van Leeuwenhoek; 1976; 42(3):255-9. PubMed ID: 825038
    [TBL] [Abstract][Full Text] [Related]  

  • 79. (1-14C) acetate assimilation by obligate methylotrophs, Pseudomonas methanica and Methylosinus trichosporium.
    Patel RN; Hoare SL; Hoare DS
    Antonie Van Leeuwenhoek; 1979; 45(3):499-511. PubMed ID: 122051
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Soluble methane monooxygenase: activation of dioxygen and methane.
    Kopp DA; Lippard SJ
    Curr Opin Chem Biol; 2002 Oct; 6(5):568-76. PubMed ID: 12413539
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.