These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 106847)
81. Properties and partial purification of the methane-oxidising enzyme system from Methylosinus trichosporium. Tonge GM; Harrison DE; Knowles CJ; Higgins IJ FEBS Lett; 1975 Oct; 58(1):293-9. PubMed ID: 178534 [No Abstract] [Full Text] [Related]
82. Microbial oxidation of methane and methanol: crystallization of methanol dehydrogenase and properties of holo- and apomethanol dehydrogenase from Methylomonas methanica. Patel RN; Hou CT; Felix A J Bacteriol; 1978 Feb; 133(2):641-9. PubMed ID: 415046 [TBL] [Abstract][Full Text] [Related]
83. Catalytic and Spectroscopic Properties of the Halotolerant Soluble Methane Monooxygenase Reductase from Methylomonas methanica MC09. Lettau E; Zill D; Späth M; Lorent C; Singh PK; Lauterbach L Chembiochem; 2022 Mar; 23(5):e202100592. PubMed ID: 34905639 [TBL] [Abstract][Full Text] [Related]
84. Synthesis of cell constituents by methane-grown Methylococcus capsulatus and Methanomonas methanooxidans. Lawrence AJ; Kemp MB; Quayle JR Biochem J; 1970 Feb; 116(4):631-9. PubMed ID: 5435492 [TBL] [Abstract][Full Text] [Related]
85. Copper ions as inhibitors of protein C of soluble methane monooxygenase of Methylococcus capsulatus (Bath). Green J; Prior SD; Dalton H Eur J Biochem; 1985 Nov; 153(1):137-44. PubMed ID: 3933977 [TBL] [Abstract][Full Text] [Related]
86. Microbial oxidation of gaseous hydrocarbons: epoxidation of C2 to C4 n-alkenes by methylotrophic bacteria. Hou CT; Patel R; Laskin AI; Barnabe N Appl Environ Microbiol; 1979 Jul; 38(1):127-34. PubMed ID: 39502 [TBL] [Abstract][Full Text] [Related]
91. New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Higgins IJ; Best DJ; Hammond RC Nature; 1980 Aug; 286(5773):561-4. PubMed ID: 6772967 [TBL] [Abstract][Full Text] [Related]
92. Methane-oxidizing microorganisms. Higgins IJ; Best DJ; Hammond RC; Scott D Microbiol Rev; 1981 Dec; 45(4):556-90. PubMed ID: 6799761 [No Abstract] [Full Text] [Related]
93. Phospholipid composition of methane-utilizing bacteria. Makula RA J Bacteriol; 1978 Jun; 134(3):771-7. PubMed ID: 96101 [TBL] [Abstract][Full Text] [Related]
94. Obligate methylotrophy: evaluation of dimethyl ether as a C1 compound. Meyers AJ J Bacteriol; 1982 May; 150(2):966-8. PubMed ID: 6802804 [TBL] [Abstract][Full Text] [Related]
95. Purification and properties of a heme-containing aldehyde dehydrogenase from Methylosinus trichosporium. Patel RN; Hou CT; Derelanko P; Felix A Arch Biochem Biophys; 1980 Sep; 203(2):654-62. PubMed ID: 6779711 [No Abstract] [Full Text] [Related]
97. Membrane modulation in a methylotrophic bacterium Methylococcus capsulatus (Texas) as a function of growth substrate. Hyder SL; Meyers A; Cayer ML Tissue Cell; 1979; 11(4):597-610. PubMed ID: 118544 [TBL] [Abstract][Full Text] [Related]
98. Isolation and characterization of a novel coenzyme Q from some methane-oxidizing bacteria. Collins MD; Green PN Biochem Biophys Res Commun; 1985 Dec; 133(3):1125-31. PubMed ID: 3936502 [TBL] [Abstract][Full Text] [Related]
99. A possible role of free radicals in the oxidation of methane by Methylococcus capsulatus. Hutchinson DW; Whittenbury R; Dalton H J Theor Biol; 1976 May; 58(2):325-35. PubMed ID: 940329 [No Abstract] [Full Text] [Related]