These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 10686306)

  • 21. The XPC-HR23B complex displays high affinity and specificity for damaged DNA in a true-equilibrium fluorescence assay.
    Hey T; Lipps G; Sugasawa K; Iwai S; Hanaoka F; Krauss G
    Biochemistry; 2002 May; 41(21):6583-7. PubMed ID: 12022861
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins.
    Bellacosa A
    Cell Death Differ; 2001 Nov; 8(11):1076-92. PubMed ID: 11687886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Mechanism, Dynamics, and Energetics of Protein-Mediated Dinucleotide Flipping in a Mismatched DNA: A Computational Study of the RAD4-DNA Complex.
    Pitta K; Krishnan M
    J Chem Inf Model; 2018 Mar; 58(3):647-660. PubMed ID: 29474070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structural basis of damaged DNA recognition and endonucleolytic cleavage for very short patch repair endonuclease.
    Tsutakawa SE; Morikawa K
    Nucleic Acids Res; 2001 Sep; 29(18):3775-83. PubMed ID: 11557809
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidative charge transfer To repair thymine dimers and damage guanine bases in DNA assemblies containing tethered metallointercalators.
    Dandliker PJ; Núñez ME; Barton JK
    Biochemistry; 1998 May; 37(18):6491-502. PubMed ID: 9572867
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure analysis of DNA lesion repair and tolerance mechanisms.
    Schneider S; Schorr S; Carell T
    Curr Opin Struct Biol; 2009 Feb; 19(1):87-95. PubMed ID: 19200715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Detection of DNA base mismatches using DNA intercalators.
    Boon EM; Kisko JL; Barton JK
    Methods Enzymol; 2002; 353():506-22. PubMed ID: 12078523
    [No Abstract]   [Full Text] [Related]  

  • 28. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases.
    Talhaoui I; Matkarimov BT; Tchenio T; Zharkov DO; Saparbaev MK
    Free Radic Biol Med; 2017 Jun; 107():266-277. PubMed ID: 27890638
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemistry and biology of DNA repair.
    Schärer OD
    Angew Chem Int Ed Engl; 2003 Jul; 42(26):2946-74. PubMed ID: 12851945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards an understanding of protein-DNA recognition.
    Rhodes D; Schwabe JW; Chapman L; Fairall L
    Philos Trans R Soc Lond B Biol Sci; 1996 Apr; 351(1339):501-9. PubMed ID: 8735272
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A multistep damage recognition mechanism for global genomic nucleotide excision repair.
    Sugasawa K; Okamoto T; Shimizu Y; Masutani C; Iwai S; Hanaoka F
    Genes Dev; 2001 Mar; 15(5):507-21. PubMed ID: 11238373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Construction and characterization of mismatch-containing circular DNA molecules competent for assessment of nick-directed human mismatch repair in vitro.
    Larson ED; Nickens D; Drummond JT
    Nucleic Acids Res; 2002 Feb; 30(3):E14. PubMed ID: 11809902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and function of mismatch repair proteins.
    Yang W
    Mutat Res; 2000 Aug; 460(3-4):245-56. PubMed ID: 10946232
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Looking for Waldo: a potential thermodynamic signature to DNA damage.
    Gold B; Stone MP; Marky LA
    Acc Chem Res; 2014 Apr; 47(4):1446-54. PubMed ID: 24702131
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-Base Lesions and Mismatches Alter the Backbone Conformational Dynamics in DNA.
    Westwood MN; Ljunggren KD; Boyd B; Becker J; Dwyer TJ; Meints GA
    Biochemistry; 2021 Mar; 60(11):873-885. PubMed ID: 33689312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The origins of high-affinity enzyme binding to an extrahelical DNA base.
    Krosky DJ; Song F; Stivers JT
    Biochemistry; 2005 Apr; 44(16):5949-59. PubMed ID: 15835884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recognition of base mismatches in DNA by 5,6-chrysenequinone diimine complexes of rhodium(III): a proposed mechanism for preferential binding in destabilized regions of the double helix.
    Jackson BA; Barton JK
    Biochemistry; 2000 May; 39(20):6176-82. PubMed ID: 10821692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Crystal structure of the DNA repair enzyme ultraviolet damage endonuclease.
    Paspaleva K; Thomassen E; Pannu NS; Iwai S; Moolenaar GF; Goosen N; Abrahams JP
    Structure; 2007 Oct; 15(10):1316-24. PubMed ID: 17937920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lessons learned from structural results on uracil-DNA glycosylase.
    Parikh SS; Putnam CD; Tainer JA
    Mutat Res; 2000 Aug; 460(3-4):183-99. PubMed ID: 10946228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.