These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10687676)

  • 1. Transient acoustic wave propagation in rigid porous media: a time-domain approach.
    Fellah ZE; Depollier C
    J Acoust Soc Am; 2000 Feb; 107(2):683-8. PubMed ID: 10687676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material.
    Fellah ZE; Fellah M; Lauriks W; Depollier C
    J Acoust Soc Am; 2003 Jan; 113(1):61-72. PubMed ID: 12558247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized hyperbolic fractional equation for transient-wave propagation in layered rigid-frame porous materials.
    Fellah M; Fellah ZE; Depollier C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016601. PubMed ID: 18351945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple scattering of acoustic waves and porous absorbing media.
    Tournat V; Pagneux V; Lafarge D; Jaouen L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026609. PubMed ID: 15447612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized equation for transient-wave propagation in continuous inhomogeneous rigid-frame porous materials at low frequencies.
    Fellah M; Fellah ZE; Ogam E; Mitri FG; Depollier C
    J Acoust Soc Am; 2013 Dec; 134(6):4642. PubMed ID: 25669276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation.
    Ogam E; Depollier C; Fellah ZE
    Rev Sci Instrum; 2010 Sep; 81(9):094902. PubMed ID: 20887001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators.
    Maestas JT; Collis JM
    J Acoust Soc Am; 2016 Mar; 139(3):1420-9. PubMed ID: 27036279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring the porosity and the tortuosity of porous materials via reflected waves at oblique incidence.
    Fellah ZE; Berger S; Lauriks W; Depollier C; Aristégui C; Chapelon JY
    J Acoust Soc Am; 2003 May; 113(5):2424-33. PubMed ID: 12765361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractional-calculus model for temperature and pressure waves in fluid-saturated porous rocks.
    Garra R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 2):036605. PubMed ID: 22060520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Mitri FG; Sebaa N; Depollier C; Lauriks W
    Rev Sci Instrum; 2007 Nov; 78(11):114902. PubMed ID: 18052497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring flow resistivity of porous materials at low frequencies range via acoustic transmitted waves.
    Fellah ZE; Fellah M; Sebaa N; Lauriks W; Depollier C
    J Acoust Soc Am; 2006 Apr; 119(4):1926-8. PubMed ID: 16642801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of transport parameters in air-saturated porous materials via reflected ultrasonic waves.
    Fellah ZE; Depollier C; Berger S; Lauriks W; Trompette P; Chapelon JY
    J Acoust Soc Am; 2003 Nov; 114(5):2561-9. PubMed ID: 14649992
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.
    De Ryck L; Lauriks W; Leclaire P; Groby JP; Wirgin A; Depollier C
    J Acoust Soc Am; 2008 Sep; 124(3):1591-606. PubMed ID: 19045651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transient ultrasound propagation in porous media using Biot theory and fractional calculus: application to human cancellous bone.
    Fellah M; Fellah ZE; Mitri FG; Ogam E; Depollier C
    J Acoust Soc Am; 2013 Apr; 133(4):1867-81. PubMed ID: 23556556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring static thermal permeability and inertial factor of rigid porous materials (L).
    Sadouki M; Fellah M; Fellah ZE; Ogam E; Sebaa N; Mitri FG; Depollier C
    J Acoust Soc Am; 2011 Nov; 130(5):2627-30. PubMed ID: 22087887
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling ultrasonic transient scattering from biological tissues including their dispersive properties directly in the time domain.
    Norton GV; Novarini JC
    Mol Cell Biomech; 2007 Jun; 4(2):75-85. PubMed ID: 17937112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propagation characteristics of interface waves between a porous medium and a sediment-containing two-phase fluid.
    Han Q; Qi L; Shan M; Yin C; Jiang X; Zhu C
    Ultrasonics; 2017 Nov; 81():73-80. PubMed ID: 28595165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of sound propagation over porous barriers of arbitrary shapes.
    Ke G; Zheng ZC
    J Acoust Soc Am; 2015 Jan; 137(1):303-9. PubMed ID: 25618061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective fractional acoustic wave equations in one-dimensional random multiscale media.
    Garnier J; Solna K
    J Acoust Soc Am; 2010 Jan; 127(1):62-72. PubMed ID: 20058951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An equivalent fluid model based finite-difference time-domain algorithm for sound propagation in porous material with rigid frame.
    Zhao J; Bao M; Wang X; Lee H; Sakamoto S
    J Acoust Soc Am; 2018 Jan; 143(1):130. PubMed ID: 29390758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.