These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10687711)

  • 1. Anisotropy of ultrasonic propagation and scattering properties in fresh rat skeletal muscle in vitro.
    Topp KA; O'Brien WD
    J Acoust Soc Am; 2000 Feb; 107(2):1027-33. PubMed ID: 10687711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Attenuation of ultrasound in skeletal muscle.
    Nassiri DK; Nicholas D; Hill CR
    Ultrasonics; 1979 Sep; 17(5):230-2. PubMed ID: 573006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proposed microscopic elastic wave theory for ultrasonic backscatter from myocardial tissue.
    Rose JH; Kaufmann MR; Wickline SA; Hall CS; Miller JG
    J Acoust Soc Am; 1995 Jan; 97(1):656-68. PubMed ID: 7860840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The acoustic properties, centered on 20 MHZ, of an IEC agar-based tissue-mimicking material and its temperature, frequency and age dependence.
    Brewin MP; Pike LC; Rowland DE; Birch MJ
    Ultrasound Med Biol; 2008 Aug; 34(8):1292-306. PubMed ID: 18343021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interlaboratory comparison of ultrasonic backscatter coefficient measurements from 2 to 9 MHz.
    Wear KA; Stiles TA; Frank GR; Madsen EL; Cheng F; Feleppa EJ; Hall CS; Kim BS; Lee P; O'Brien WD; Oelze ML; Raju BI; Shung KK; Wilson TA; Yuan JR
    J Ultrasound Med; 2005 Sep; 24(9):1235-50. PubMed ID: 16123184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying acoustic scattering sources in normal renal parenchyma from the anisotropy in acoustic properties.
    Insana MF; Hall TJ; Fishback JL
    Ultrasound Med Biol; 1991; 17(6):613-26. PubMed ID: 1962364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anisotropy of ultrasonic backscatter and attenuation from human calcaneus: implications for relative roles of absorption and scattering in determining attenuation.
    Wear KA
    J Acoust Soc Am; 2000 Jun; 107(6):3474-9. PubMed ID: 10875391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropy of the apparent frequency dependence of backscatter in formalin fixed human myocardium.
    Hall CS; Verdonk ED; Wickline SA; Perez JE; Miller JG
    J Acoust Soc Am; 1997 Jan; 101(1):563-8. PubMed ID: 9000744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-frequency characterization of the speed of sound and attenuation coefficient for longitudinal transmission of freshly excised human skulls.
    Pichardo S; Sin VW; Hynynen K
    Phys Med Biol; 2011 Jan; 56(1):219-50. PubMed ID: 21149950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature dependence of ultrasonic propagation speed and attenuation in canine tissue.
    Techavipoo U; Varghese T; Zagzebski JA; Stiles T; Frank G
    Ultrason Imaging; 2002 Oct; 24(4):246-60. PubMed ID: 12665240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of ultrasonic propagation speed and attenuation in excised canine liver tissue measured using transmitted and reflected pulses.
    Techavipoo U; Varghese T; Chen Q; Stiles TA; Zagzebski JA; Frank GR
    J Acoust Soc Am; 2004 Jun; 115(6):2859-65. PubMed ID: 15237809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of anisotropic myocardial backscatter using spectral slope, intercept and midband fit parameters.
    Yang M; Krueger TM; Miller JG; Holland MR
    Ultrason Imaging; 2007 Apr; 29(2):122-34. PubMed ID: 17679326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-dependent attenuation and backscatter coefficients in bovine trabecular bone from 0.2 to 1.2 MHz.
    Il Lee K; Joo Choi M
    J Acoust Soc Am; 2012 Jan; 131(1):EL67-73. PubMed ID: 22280732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues.
    Papadacci C; Tanter M; Pernot M; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Jun; 61(6):986-96. PubMed ID: 24859662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-frequency attenuation and backscatter measurements of rat blood between 30 and 60 MHz.
    Huang CC
    Phys Med Biol; 2010 Oct; 55(19):5801-15. PubMed ID: 20844333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantifying Backscatter Anisotropy Using the Reference Phantom Method.
    Guerrero QW; Rosado-Mendez IM; Drehfal LC; Feltovich H; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jul; 64(7):1063-1077. PubMed ID: 28463191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attenuation coefficient and propagation speed estimates of rat and pig intercostal tissue as a function of temperature.
    Towa RT; Miller RJ; Frizzell LA; Zachary JF; O'Brien WD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Oct; 49(10):1411-20. PubMed ID: 12403142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency dependence of acoustic parameters of freshly excised tissues of Sprague Dawley rats.
    Bhagat P; Kadaba M; Ware R; Cockerill W
    Ultrasonics; 1977 Jul; 15(4):179-82. PubMed ID: 878064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anisotropy of the ultrasonic backscatter of myocardial tissue: II. Measurements in vivo.
    Madaras EI; Perez J; Sobel BE; Mottley JG; Miller JG
    J Acoust Soc Am; 1988 Feb; 83(2):762-9. PubMed ID: 3351134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collagenase treatment reduces the anisotropy of ultrasonic backscatter in rat myocardium by reducing collagen crosslinks.
    Pittman LA; Whittaker P; Milne ML; Chung CS
    Physiol Rep; 2023 Nov; 11(21):e15849. PubMed ID: 37960992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.