BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10687794)

  • 1. High-frequency color flow imaging of the microcirculation.
    Goertz DE; Christopher DA; Yu JL; Kerbel RS; Burns PN; Foster FS
    Ultrasound Med Biol; 2000 Jan; 26(1):63-71. PubMed ID: 10687794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-frequency pulsed-wave Doppler ultrasound system for the detection and imaging of blood flow in the microcirculation.
    Christopher DA; Burns PN; Starkoski BG; Foster FS
    Ultrasound Med Biol; 1997; 23(7):997-1015. PubMed ID: 9330444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-frequency 3-D color-flow imaging of the microcirculation.
    Goertz DE; Yu JL; Kerbel RS; Burns PN; Foster FS
    Ultrasound Med Biol; 2003 Jan; 29(1):39-51. PubMed ID: 12604116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-frequency subharmonic pulsed-wave Doppler and color flow imaging of microbubble contrast agents.
    Needles A; Goertz DE; Karshafian R; Cherin E; Brown AS; Burns PN; Foster FS
    Ultrasound Med Biol; 2008 Jul; 34(7):1139-51. PubMed ID: 18328617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multigated contrast-enhanced power Doppler to measure blood flow in mice tumors.
    Kamotani Y; Lee WM; Arger PH; Cary TW; Sehgal CM
    Ultrasound Med Biol; 2003 Jul; 29(7):977-84. PubMed ID: 12878243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-frequency ultrasound Doppler system for biomedical applications with a 30-MHz linear array.
    Xu X; Sun L; Cannata JM; Yen JT; Shung KK
    Ultrasound Med Biol; 2008 Apr; 34(4):638-46. PubMed ID: 17993243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detectability of small blood vessels with high-frequency power Doppler and selection of wall filter cut-off velocity for microvascular imaging.
    Pinter SZ; Lacefield JC
    Ultrasound Med Biol; 2009 Jul; 35(7):1217-28. PubMed ID: 19394752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A real-time two-dimensional pulsed-wave Doppler system.
    Scabia M; Calzolai M; Capineri L; Masotti L; Fort A
    Ultrasound Med Biol; 2000 Jan; 26(1):121-31. PubMed ID: 10687800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-frequency, nonlinear flow imaging of microbubble contrast agents.
    Goertz DE; Needles A; Burns PN; Foster FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Mar; 52(3):495-502. PubMed ID: 15857059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microcirculation volumetric flow assessment using high-resolution, contrast-assisted images.
    Yeh CK; Lu SY; Chen YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):74-83. PubMed ID: 18334315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 44-MHz LiNbO3 transducers for UBM-guided Doppler ultrasound.
    Aristizábal O; Turnbull DH
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Jun; 50(6):623-30. PubMed ID: 12839174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-frequency continuous-wave Doppler ultrasound system for the detection of blood flow in the microcirculation.
    Christopher DA; Burns PN; Armstrong J; Foster FS
    Ultrasound Med Biol; 1996; 22(9):1191-203. PubMed ID: 9123644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantified color Doppler sonography of tumor vascularity in an animal model.
    Fleischer AC; Wojcicki WE; Donnelly EF; Pickens DR; Thirsk G; Thurman GB; Hellerqvist CG
    J Ultrasound Med; 1999 Aug; 18(8):547-51. PubMed ID: 10447080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast enhanced ultrasonography (CEUS) in the characterization of tumor microcirculation. Validation of the procedure in the animal experimental model.
    Badea AF; Tamas-Szora A; Clichici S; Socaciu M; Tăbăran AF; Băciut G; Cătoi C; Mureşan A; Buruian M; Badea R
    Med Ultrason; 2013 Jun; 15(2):85-94. PubMed ID: 23702496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peak velocity overestimation and linear-array spectral Doppler.
    Eicke BM; Kremkau FW; Hinson H; Tegeler CH
    J Neuroimaging; 1995 Apr; 5(2):115-21. PubMed ID: 7718938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New hemodynamic approach to angiogenesis: color and pulsed Doppler ultrasonography.
    Lassau N; Paturel-Asselin C; Guinebretiere JM; Leclère J; Koscielny S; Roche A; Chouaib S; Peronneau P
    Invest Radiol; 1999 Mar; 34(3):194-8. PubMed ID: 10084663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasound for the visualization and quantification of tumor microcirculation.
    Foster FS; Burns PN; Simpson DH; Wilson SR; Christopher DA; Goertz DE
    Cancer Metastasis Rev; 2000; 19(1-2):131-8. PubMed ID: 11191052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and implementation of a smartphone-based portable ultrasound pulsed-wave Doppler device for blood flow measurement.
    Huang CC; Lee PY; Chen PY; Liu TY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jan; 59(1):182-8. PubMed ID: 22293750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of tumor vasculature for diagnostic and therapeutic applications in a mouse model in vivo using 25-MHz power Doppler imaging.
    Chen JJ; Chen JJ; Chiang CS; Hong JH; Yeh CK
    Ultrasonics; 2011 Dec; 51(8):925-31. PubMed ID: 21645914
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonographic depiction of tumor vascularity and flow: from in vivo models to clinical applications.
    Fleischer AC
    J Ultrasound Med; 2000 Jan; 19(1):55-61. PubMed ID: 10625191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.