BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 10687826)

  • 1. Empirical evidence for differential organ reductions during trans-oceanic bird flight.
    Battley PF; Piersma T; Dietz MW; Tang S; Dekinga A; Hulsman K
    Proc Biol Sci; 2000 Jan; 267(1439):191-5. PubMed ID: 10687826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Is long-distance bird flight equivalent to a high-energy fast? Body composition changes in freely migrating and captive fasting great knots.
    Battley PF; Dietz MW; Piersma T; Dekinga A; Tang S; Hulsman K
    Physiol Biochem Zool; 2001; 74(3):435-49. PubMed ID: 11331517
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carrying large fuel loads during sustained bird flight is cheaper than expected.
    Kvist A; Lindström A ; Green M; Piersma T; Visser GH
    Nature; 2001 Oct; 413(6857):730-2. PubMed ID: 11607031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic cues and time of season affect fuel deposition in migratory thrush nightingales (Luscinia luscinia).
    Kullberg C; Lind J; Fransson T; Jakobsson S; Vallin A
    Proc Biol Sci; 2003 Feb; 270(1513):373-8. PubMed ID: 12639316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein loss during long-distance migratory flight in passerine birds: adaptation and constraint.
    Schwilch R; Grattarola A; Spina F; Jenni L
    J Exp Biol; 2002 Mar; 205(Pt 5):687-95. PubMed ID: 11907058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic flexibility of body composition in relation to migratory state, age, and sex in the western sandpiper (Calidris mauri).
    Guglielmo CG; Williams TD
    Physiol Biochem Zool; 2003; 76(1):84-98. PubMed ID: 12695989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Are birds stressed during long-term flights? A wind-tunnel study on circulating corticosterone in the red knot.
    Jenni-Eiermann S; Hasselquist D; Lindström A; Koolhaas A; Piersma T
    Gen Comp Endocrinol; 2009; 164(2-3):101-6. PubMed ID: 19481083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain regions associated with visual cues are important for bird migration.
    Vincze O; Vágási CI; Pap PL; Osváth G; Møller AP
    Biol Lett; 2015 Nov; 11(11):. PubMed ID: 26538538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Move that fatty acid: fuel selection and transport in migratory birds and bats.
    Guglielmo CG
    Integr Comp Biol; 2010 Sep; 50(3):336-45. PubMed ID: 21558208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy metabolism during endurance flight and the post-flight recovery phase.
    Jenni-Eiermann S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):431-438. PubMed ID: 28224277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Obese super athletes: fat-fueled migration in birds and bats.
    Guglielmo CG
    J Exp Biol; 2018 Mar; 221(Pt Suppl 1):. PubMed ID: 29514885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-duration wind tunnel flights reveal exponential declines in protein catabolism over time in short- and long-distance migratory warblers.
    Elowe CR; Groom DJE; Slezacek J; Gerson AR
    Proc Natl Acad Sci U S A; 2023 Apr; 120(17):e2216016120. PubMed ID: 37068245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The gliding speed of migrating birds: slow and safe or fast and risky?
    Horvitz N; Sapir N; Liechti F; Avissar R; Mahrer I; Nathan R
    Ecol Lett; 2014 Jun; 17(6):670-9. PubMed ID: 24641086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid changes in the size of different functional organ and muscle groups during refueling in a long-distance migrating shorebird.
    Piersma T; Gudmundsson GA; Lilliendahl K
    Physiol Biochem Zool; 1999; 72(4):405-15. PubMed ID: 10438678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dietary lipid composition and avian migratory flight performance: Development of a theoretical framework for avian fat storage.
    Price ER
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Dec; 157(4):297-309. PubMed ID: 20561892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Baseline and stress-induced plasma corticosterone during long-distance migration in the bar-tailed godwit, Limosa lapponica.
    Landys-Ciannelli MM; Ramenofsky M; Piersma T; Jukema J; Wingfield JC;
    Physiol Biochem Zool; 2002; 75(1):101-10. PubMed ID: 11880983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What determines probability of surviving predator attacks in bird migration?: the relative importance of vigilance and fuel load.
    Lind J
    J Theor Biol; 2004 Nov; 231(2):223-7. PubMed ID: 15380386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bird or bat: comparing airframe design and flight performance.
    Hedenström A; Johansson LC; Spedding GR
    Bioinspir Biomim; 2009 Mar; 4(1):015001. PubMed ID: 19258691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerobic performance in tinamous is limited by their small heart. A novel hypothesis in the evolution of avian flight.
    Altimiras J; Lindgren I; Giraldo-Deck LM; Matthei A; Garitano-Zavala Á
    Sci Rep; 2017 Nov; 7(1):15964. PubMed ID: 29162941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential catabolism of muscle protein in garden warblers (Sylvia borin): flight and leg muscle act as a protein source during long-distance migration.
    Bauchinger U; Biebach H
    J Comp Physiol B; 2001 May; 171(4):293-301. PubMed ID: 11409626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.