BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 10687889)

  • 1. Prevention of progression in chronic myeloid leukemia by altering DNA methylation with a pyridoxine analogue.
    Sastry PS
    Med Hypotheses; 1999 Dec; 53(6):488-9. PubMed ID: 10687889
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylation status of RASSF1A in patients with chronic myeloid leukemia.
    Avramouli A; Tsochas S; Mandala E; Katodritou E; Ioannou M; Ritis K; Speletas M
    Leuk Res; 2009 Aug; 33(8):1130-2. PubMed ID: 19193434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ABL1 promoter methylation can exist independently of BCR-ABL transcription in chronic myeloid leukemia hematopoietic progenitors.
    Sun B; Jiang G; Zaydan MA; La Russa VF; Safah H; Ehrlich M
    Cancer Res; 2001 Sep; 61(18):6931-7. PubMed ID: 11559572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased expression level of SH2 domain-containing protein tyrosine phosphatase-1 (Shp1) is associated with progression of chronic myeloid leukaemia.
    Amin HM; Hoshino K; Yang H; Lin Q; Lai R; Garcia-Manero G
    J Pathol; 2007 Aug; 212(4):402-10. PubMed ID: 17503411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aberrant methylation of the death-associated protein kinase 1 (DAPK1) CpG island in chronic myeloid leukemia.
    Qian J; Wang YL; Lin J; Yao DM; Xu WR; Wu CY
    Eur J Haematol; 2009 Feb; 82(2):119-23. PubMed ID: 19018866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia.
    Roman-Gomez J; Jimenez-Velasco A; Agirre X; Castillejo JA; Navarro G; San Jose-Eneriz E; Garate L; Cordeu L; Cervantes F; Prosper F; Heiniger A; Torres A
    Leuk Res; 2008 Mar; 32(3):487-90. PubMed ID: 17765966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. sFRP1 promoter methylation is associated with persistent Philadelphia chromosome in chronic myeloid leukemia.
    Pehlivan M; Sercan Z; Sercan HO
    Leuk Res; 2009 Aug; 33(8):1062-7. PubMed ID: 19118898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methylation of histones in myeloid leukemias as a potential marker of granulocyte abnormalities.
    Lukásová E; Koristek Z; Falk M; Kozubek S; Grigoryev S; Kozubek M; Ondrej V; Kroupová I
    J Leukoc Biol; 2005 Jan; 77(1):100-11. PubMed ID: 15507473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detailed mapping of methylcytosine positions at the CpG island surrounding the Pa promoter at the bcr-abl locus in CML patients and in two cell lines, K562 and BV173.
    Fajkusová L; Fajkus J; Polácková K; Fulnecek J; Dvoráková D; Krahulcová E
    Blood Cells Mol Dis; 2000 Jun; 26(3):193-204. PubMed ID: 10950939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells.
    Jiang X; Saw KM; Eaves A; Eaves C
    J Natl Cancer Inst; 2007 May; 99(9):680-93. PubMed ID: 17470736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p53 mutations, methylation and genomic instability in the progression of chronic myeloid leukaemia.
    Guinn BA; Mills KI
    Leuk Lymphoma; 1997 Jul; 26(3-4):211-26. PubMed ID: 9322884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigational strategies in chronic myelogenous leukemia.
    Cortes JE; O'Brien SM; Giles F; Alvarez RH; Talpaz M; Kantarjian HM
    Hematol Oncol Clin North Am; 2004 Jun; 18(3):619-39, ix. PubMed ID: 15271396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study of calcitonin gene methylation in chronic myeloid leukemia by using Hpa II-PCR].
    Tan B; Cao P; Qi Z
    Hunan Yi Ke Da Xue Xue Bao; 1999; 24(4):371-3. PubMed ID: 12080652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia.
    Barnes DJ; Palaiologou D; Panousopoulou E; Schultheis B; Yong AS; Wong A; Pattacini L; Goldman JM; Melo JV
    Cancer Res; 2005 Oct; 65(19):8912-9. PubMed ID: 16204063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of methylation in CML.
    Rachmilewitz EA
    Przegl Lek; 2000; 57 Suppl 1():25-6. PubMed ID: 10822991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular mechanism of chronic myelogenous leukemia and its therapeutic implications: studies in a murine model.
    Ren R
    Oncogene; 2002 Dec; 21(56):8629-42. PubMed ID: 12476309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A sequential blockade strategy for the design of combination therapies to overcome oncogene addiction in chronic myelogenous leukemia.
    Chen R; Gandhi V; Plunkett W
    Cancer Res; 2006 Nov; 66(22):10959-66. PubMed ID: 17108134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing outcomes for patients with advanced disease in chronic myelogenous leukemia.
    Giles FJ; DeAngelo DJ; Baccarani M; Deininger M; Guilhot F; Hughes T; Mauro M; Radich J; Ottmann O; Cortes J
    Semin Oncol; 2008 Feb; 35(1 Suppl 1):S1-17; quiz S18-20. PubMed ID: 18346528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aberrant DNA Methylation in Chronic Myeloid Leukemia: Cell Fate Control, Prognosis, and Therapeutic Response.
    Behzad MM; Shahrabi S; Jaseb K; Bertacchini J; Ketabchi N; Saki N
    Biochem Genet; 2018 Jun; 56(3):149-175. PubMed ID: 29388070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational approaches to the design of therapeutics targeting molecular markers: the case of chronic myelogenous leukemia.
    Saglio G; Morotti A; Mattioli G; Messa E; Giugliano E; Volpe G; Rege-Cambrin G; Cilloni D
    Ann N Y Acad Sci; 2004 Dec; 1028():423-31. PubMed ID: 15650267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.