BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10687891)

  • 41. Modelling in vitro growth of dense root networks.
    Bastian P; Chavarría-Krauser A; Engwer C; Jäger W; Marnach S; Ptashnyk M
    J Theor Biol; 2008 Sep; 254(1):99-109. PubMed ID: 18561955
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reaction-diffusion model for the growth of avascular tumor.
    Ferreira SC; Martins ML; Vilela MJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021907. PubMed ID: 11863563
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls.
    de Pillis LG; Gu W; Fister KR; Head T; Maples K; Murugan A; Neal T; Yoshida K
    Math Biosci; 2007 Sep; 209(1):292-315. PubMed ID: 17306310
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell migration in tumors.
    Yamaguchi H; Wyckoff J; Condeelis J
    Curr Opin Cell Biol; 2005 Oct; 17(5):559-64. PubMed ID: 16098726
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Proliferation and competition in discrete biological systems.
    Louzoun Y; Solomon S; Atlan H; Cohen IR
    Bull Math Biol; 2003 May; 65(3):375-96. PubMed ID: 12749530
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modelling liver tissue properties using a non-linear visco-elastic model for surgery simulation.
    Schwartz JM; Denninger M; Rancourt D; Moisan C; Laurendeau D
    Med Image Anal; 2005 Apr; 9(2):103-12. PubMed ID: 15721226
    [TBL] [Abstract][Full Text] [Related]  

  • 47. New species in evolving networks--stochastic theory of sensitive networks and applications on the metaphorical level.
    Ebeling W; Feistel R; Hartmann-Sonntag I; Schimansky-Geier L; Scharnhorst A
    Biosystems; 2006 Jul; 85(1):65-71. PubMed ID: 16757101
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [A logistic cellular automaton for simulating tumor growth].
    Hu R; Ruan X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):79-82. PubMed ID: 12744169
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A nonlinear mathematical model of cell turnover, differentiation and tumorigenesis in the intestinal crypt.
    d'Onofrio A; Tomlinson IP
    J Theor Biol; 2007 Feb; 244(3):367-74. PubMed ID: 17049944
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Asymmetric growth of models of avascular solid tumours: exploiting symmetries.
    Byrne H; Matthews P
    IMA J Math Appl Med Biol; 2002 Mar; 19(1):1-29. PubMed ID: 12408222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Mathematical modelling of the kinetics of a heterogeneous cell population during tumor growth. I. Analytical study].
    Bardychev DM; Ivanov VK
    Tsitologiia; 1984 Dec; 26(12):1357-64. PubMed ID: 6528359
    [TBL] [Abstract][Full Text] [Related]  

  • 52. On a mathematical model of tumor growth based on cancer stem cells.
    Tello JI
    Math Biosci Eng; 2013 Feb; 10(1):263-78. PubMed ID: 23311372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [A simplified model of growth of solid tumors].
    Gum RE; Zharinov GM; Narbaev VA; Iakudov E
    Vopr Onkol; 2011; 57(1):63-6. PubMed ID: 21598710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. What can be learned from a chaotic cancer model?
    Letellier C; Denis F; Aguirre LA
    J Theor Biol; 2013 Apr; 322():7-16. PubMed ID: 23318987
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of anatomical constraints on tumor growth.
    Capogrosso Sansone B; Delsanto PP; Magnano M; Scalerandi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 1):021903. PubMed ID: 11497616
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A hybrid approach to multi-scale modelling of cancer.
    Osborne JM; Walter A; Kershaw SK; Mirams GR; Fletcher AG; Pathmanathan P; Gavaghan D; Jensen OE; Maini PK; Byrne HM
    Philos Trans A Math Phys Eng Sci; 2010 Nov; 368(1930):5013-28. PubMed ID: 20921009
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Re: E. Farber, Cell proliferation as a major risk factor for cancer: a concept of doubtful validity. Cancer Res., 55: 3759-3762, 1995.
    Cohen SM; Ellwein LB
    Cancer Res; 1996 Sep; 56(18):4269-70; author reply 4272-3. PubMed ID: 8797605
    [No Abstract]   [Full Text] [Related]  

  • 58. Complex Far-Field Geometries Determine the Stability of Solid Tumor Growth with Chemotaxis.
    Lu MJ; Liu C; Lowengrub J; Li S
    Bull Math Biol; 2020 Mar; 82(3):39. PubMed ID: 32166456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell proliferation as a major risk factor for cancer: a concept of doubtful validity.
    Farber E
    Cancer Res; 1995 Sep; 55(17):3759-62. PubMed ID: 7641190
    [No Abstract]   [Full Text] [Related]  

  • 60. Correspondence re: J. M. Yuhas and A. P. Li. Growth fraction as the major determinant of multicellular tumor spheroid growth rates. Cancer Res., 38: 1528-1532, 1978.
    Curphey TJ
    Cancer Res; 1984 Feb; 44(2):866-8. PubMed ID: 6692386
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.